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Our paper proposes a COTG-based second-order masked AES design which is based on an optimized
S-box. In the original paper, Section 3 focuses on our optimized second-order DOM AES S-box
(Figure 1), and compares it to two other designs (Table 1). We give the RTL code and testbench
for all three designs in Section 2, explain how to formally verify it with Coco [Gig+21] in Section 4
and provide scripts for reproducing area numbers in Section 6. Sections 4 and 5 of the original
paper describe our novel COTG-based second-order masked AES architecture including a Trivium
RNG to supply the required randomness (Figure 4), and compare it to two other less optimal
designs (Table 3c). Therefore, the artifact includes the RTL code and testbench for both the new
and reference designs (Section 3), as well as instructions to produce the area numbers from Table 3c
(Section 6). We describe how to formally verify our new design with Coco in Section 4, according
to Section 6.2 in the paper, and explain how to perform the experimental verification on an FPGA
board in Section 5.

The included artifacts can be summarized as follows:

• [Section 2] Masked AES S-boxes

– Refers to Section 3, Figure 1, Table 1 in paper

– Includes RTL code and testbenches

– Optimized second-order DOM AES S-box (using the new types of multipliers and 78
bits of fresh randomness)

– Insecure second-order DOM AES S-box [GMK16] (using original DOM-dep multipliers
and 84 bits of fresh randomness)

– Fixed second-order DOM AES S-box (using fixed DOM-dep multipliers and 104 bits of
fresh randomness)

• [Section 3] Masked AES architectures

– Refers to Section 4, Section 5, Figure 4, Table 3c in paper

– Includes RTL code and testbenches

– Optimized DOM-AES with COTG (using 1 Trivium instance and 3 200 random bits per
encryption)

– Optimized DOM-AES without COTG (using 7.5 Trivium instances and 15 600 random
bits per encryption)

– DOM-AES with fixed DOM-dep without COTG (using 10 Trivium instances and 20 800
random bits per encryption)

• [Section 4] Formal verification

– Refers to Section 6.2 in the paper

– Includes Coco source code and verification scripts
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– Formal verification of fixed DOM-dep multiplier and masked AES S-box

• [Section 5] Experimental Verification

– Refers to Section 6.3 in the paper

– Includes description of evaluation setup, the script to record power traces, the Vivado
project, the bitstream file, and a sample trace set

– Subject of the experimental evaluation is the Optimized DOM-AES with COTG using
1 Trivium instance and 3 200 random bits per encryption

• [Section 6] Generation of area numbers

– Refers to Table 1, Table 3a, Table 3c in the paper

– Includes information about proprietary synthesis flow used in the paper

– Includes instructions to use alternative Open Source synthesis flow using Yosys and
NanGate OCL

• supplementary.pdf : The supplementary PDF which was originally attached to our sub-
mission.

1 Preliminaries

The artifacts are stored in artifact.zip. Extract the directory. In the following, we will refer to
this location as $ARTIFACT HOME.

All experiments are executed on a PC running Ubuntu 22.04.3 LTS, except for the experimental
verification (Section 5), where we use Ubuntu 22.04.2 LTS. Although these are the recommended
platforms to run the evaluations, it might also work for others.

Some experiments require Verilator. We recommend to use 5.014 (built from source using Github
commit e6b0bdd4d), but the experiments could also work with other versions/commits. When
building from source is not possible, a list of pre-built packages for various distributions can be
found here. Alternatively, one could use the docker container. In case of using pre-built images,
adaptions to the Makefiles are necessary whenever $VERILATOR HOME DIR is used. The Makefile
expects that $VERILATOR HOME DIR/bin/verilator points to the Verilator executable, which needs
to be adapted accordingly.

2 Masked AES S-boxes

For the three different S-boxes mentioned in Table 1 in the paper, we give the SystemVerilog code
and a Verilator testbench in the directory sboxes .

2.1 Directory Structure

• sboxes/rtl : SystemVerilog source code

– sboxes/rtl/sbox opt : SystemVerilog code of our optimized second-order DOM AES
S-box using the new types of multipliers and 78 bits of fresh randomness. It follows the
structure of Figure 1 in the paper.
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– sboxes/rtl/sbox insecure : SystemVerilog code of the second-order DOM AES S-
box proposed by [GMK16] using the original DOM-dep multipliers which we show to
be insecure in the presence of glitches, and 84 bits of fresh randomness. It follows the
structure of Figure A3 in the supplementary material.

– sboxes/rtl/sbox fixed : SystemVerilog code of the fixed second-order DOM AES S-
box using the fixed DOM-dep multipliers with 104 bits of fresh randomness. It follows the
structure of Figure A3 in the supplementary material. The implementation of the fixed
DOM-dep multiplier is given in sboxes/rtl/sbox fixed/aes dom dep mul gf2pn.sv

• sboxes/tb/tb sbox.cpp : Verilator testbench written in C++. Since all three S-box imple-
mentations have the same input and output signals, a single testbench can be used to simulate
all of them. It also produces a VCD trace file ( sboxes/build/aes sbox dom.vcd ).

• sboxes/build : directory used to store build artifacts such as the Verilator model and the
VCD trace file

• sboxes/Makefile : Makefile used to build the Verilator model. The supported targets are
sbox opt, sbox insecure, sbox fixed to simulate the S-boxes, and clean to remove build
artifacts.

2.2 Simulation

In order to simulate a specific S-box design with Verilator, the following steps are necessary:

1. Install the necessary software:

• Verilator (5.014 2023-08-06 rev v5.014-35-ge6b0bdd4d). Build it from source by cloning
the github repository. Follow the build instructions there. Use commit e6b0bdd4d.
Additional information can be found in Section 1.

• gcc/g++ 11.4.0

• (Optional) GtkWave for viewing the resulting VCD trace file

2. Navigate to the correct directory:

cd $ARTIFACT_HOME/sboxes

3. Set the environment variable $VERILATOR HOME DIR such that it points to the Verilator in-
stallation directory. For example, if you cloned the Verilator repository in $HOME, it should
be set to $HOME/verilator, e.g.:

export VERILATOR_HOME_DIR=$HOME/verilator

4. Select a design, either sbox opt, sbox insecure or sbox fixed, and build the Verilator
model, e.g.:

make sbox_opt

5. Start the simulation, which does 10 000 evaluations of the masked S-box and checks if the
result is correct. The simulation trace file can be found in sboxes/build/aes sbox dom.vcd .

./ build/aes_sbox_dom
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2.3 Description of ports

The top module of the respective S-box design can be found in aes sbox dom.sv in the respective
subdirectory. It computes y = sbox(x) using the three shares of x s.t. x = x0 ⊕ x1 ⊕ x2, and
outputs the three shares of y s.t. y = y0 ⊕ y1 ⊕ y2. In Table 1 we give a preciser description of all
input ports. In Figure 1 we give an example of the timing of input and output signals.

Port name Direction Width Description

clk i input 1 Primary clock

rst ni input 1 Reset signal, active = 0, inactive = 1

en i input 1 Enable signal, must be high during S-box computation

finished o output 1 High for exactly one cycle after S-box computation has finished

data i input 8 x0 (share 0 of x)

mask0 i input 8 x1 (share 1 of x)

mask1 i input 8 x2 (share 2 of x)

prd i input
sbox opt: 78

Fresh randomness consumed by the designsbox insecure: 84
sbox fixed: 104

data o output 8 y0 (share 0 of y)

mask0 o output 8 y1 (share 1 of y)

mask1 o output 8 y2 (share 2 of y)

Table 1: Description of ports for S-box designs

clk_i

rst_ni

en_i

finished_o

data_i 94

mask0_i F0

mask1_i 8b

prd_i 11e003c909eb4b8c5f6c

data_o c2

mask0_o 25

mask1_o 38

Figure 1: Timing of signals in sbox opt for S-box input x = ef = 94 ⊕ f0 ⊕ 8b, computing the
output y = df = c2⊕ 25⊕ 38

3 Masked AES architectures

For the three different AES architectures mentioned in Table 3c in the paper, we give the Sys-
temVerilog code and a Verilator testbench in the directory aes architectures .
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3.1 Directory Structure

• aes architectures/rtl : SystemVerilog source code

– aes architectures/rtl/opt : SystemVerilog code of our optimized AES implementa-
tion using COTG connected to a Trivium RNG. The general architecture is sketched in
Figure 4 in the paper. It uses 3 200 random bits per encryption.

– aes architectures/rtl/opt nocotg : SystemVerilog code of our optimized AES im-
plementation without using COTG. It is connected to 7.5 Trivium instances. It also
follows the architecture sketched in Figure 4, with the difference that the Trivium RNG
must deliver 480 bits of randomness per cycle. Therefore, the code base is the same as
for the opt architecture, except for top.sv and aes top.sv

– aes architectures/rtl/fixed : SystemVerilog code of a DOM AES implementa-
tion without using COTG, using the fixed version of DOM-dep multipliers, i.e., the
sbox fixed described in the previous chapter. It needs to be connected to 10 Trivium
instances since it requires 640 bits of fresh randomness per cycle.

• aes architectures/tb/tb sbox.cpp : Verilator testbench written in C++. Since all three
AES architectures have the same input and output ports, a single testbench can be used to
simulate all of them. It also produces a VCD trace file ( aes architectures/build/aes.vcd )

• aes architectures/build : directory used to store build artifacts such as the Verilator
model and the VCD trace file

• aes architectures/Makefile : Makefile used to build the Verilator model. The supported
targets are opt, opt nocotg, fixed to simulate the AES architecture, and clean to remove
build artifacts.

3.2 Simulation

In order to simulate a specific AES design with Verilator, the following steps are necessary:

1. Install the necessary software:

• Verilator (5.014 2023-08-06 rev v5.014-35-ge6b0bdd4d). Build it from source by cloning
the github repository. Follow the build instructions there. Use commit e6b0bdd4d.
Additional information can be found in Section 1.

• gcc/g++ 11.4.0

• (Optional) GtkWave for viewing the resulting VCD trace file

2. Navigate to the correct directory:

cd $ARTIFACT_HOME/aes_architectures

3. Set the environment variable $VERILATOR HOME DIR such that it points to the Verilator in-
stallation directory. For example, if you cloned the Verilator repository in $HOME, it should
be set to $HOME/verilator, e.g.:

export VERILATOR_HOME_DIR=$HOME/verilator

4. Select a design, either opt, opt nocotg or fixed, and build the Verilator model, e.g.:
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make opt

5. Start the simulation, which first initializes the Trivium RNG(s) with a random key and IV,
and then does 1000 AES encryption with a random key and plaintext. The ciphertext is
compared with the output of the tinyAES128 implementation. The simulation trace file can
be found in aes architectures/build/aes.vcd .

./ build/aes

3.3 State machine and block diagram

The organization of Verilog modules to build our optimized AES architecture using COTG is shown
in Figure 4. The encryption is controlled by two state machines. The outer state machine, as shown
in Figure 2, allows to either reseed/initialize the RNG, or start the AES encryption. The inner
state machine, as shown in Figure 3, is used for the AES encryption itself.
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OUTER_IDLE

OUTER_INIT_TRIVIUM OUTER_INIT

1

0

trivium_reseed_i

1

0start_i

OUTER_HEATUP_RNG

0

1

trivium_valid

OUTER_WAIT_AES

aes_start = 1

OUTER_AES_ROUND

1

0

aes_busy

OUTER_AES_FINISH

Figure 2: State machine controlling the RNG reseeding and AES encryption in top. By setting
trivium reseed i high, the RNG can be reseeded. Reseeding is over if trivium valid is high. By
setting start i high, an AES encryption is started. In state OUTER WAIT AES, the control signal
aes start which is connected to port start i of the aes module is set high. The encryption is
finished if (aes busy turns from high to low).
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IDLE

1

0aes_start

INIT_KEY

INIT

INIT_LIN_MAP_RK

SBOX1

SBOX2

SBOX3

SBOX4

0 1

round_ctr == 9

ROUND_END LAST_ROUND_END

FINISH

Figure 3: State machine controlling the AES encryption. The encryption starts if the input signal
aes start is high. The output signal, aes busy, is high whenever the encryption is not in state
IDLE. After some initialization and a dedicated state to let the key schedule start a cycle earlier
(cf. our paper), every round consists of four S-box states and ROUND END to compute the linear
operaitons.
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top : top.sv

aes : aes_top.sv rng : trivium_rng.sv

u_lin_map_00 : aes_lin_map.sv

u_aes_sbox_00 : aes_sbox_dom.sv

u_lin_map_01 : aes_lin_map.sv

u_aes_sbox_01 : aes_sbox_dom.sv

u_lin_map_33 : aes_lin_map.sv

u_aes_sbox_33 : aes_sbox_dom.sv

u_aes_shift_rows0 : aes_shift_rows.sv

u_aes_mix_columns1 : aes_mix_columns.sv

u_aes_shift_rows2 : aes_shift_rows.sv

u_aes_mix_columns0 : aes_mix_columns.sv

u_aes_shift_rows1 : aes_shift_rows.sv

u_aes_mix_column_0 : aes_mix_single_column.sv

u_aes_mix_column_3 : aes_mix_single_column.sv

key_lin_map_0 : aes_lin_map.sv

key_sbox_0 : aes_sbox_dom.sv

key_sbox_3 : aes_sbox_dom.sv

key_lin_map_3 : aes_lin_map.sv

...

...

u_aes_mix_columns2 : aes_mix_columns.sv

...

inv_gf2p8 : aes_dom_inverse_gf2p8

indep1 : aes_dom_indep_mul_gf2pn

indep2 : aes_dom_indep_mul_gf2pn

indep3A: aes_dom_indep_mul_gf2pn

indep3B: aes_dom_indep_mul_gf2pn

indep4A: aes_dom_indep_mul_gf2pn

indep4B: aes_dom_indep_mul_gf2pn

Figure 4: Organization of Verilog modules to build our optimized AES architecture. The top module top contains the AES core (aes),
and the Trivium RNG (trivium, in blue ). The AES core instantiates 16 S-box modules (u aes sbox ij for 0 ≤ i, j ≤ 3) and respective
linear maps (u lin map ij for 0 ≤ i, j ≤ 3), sketched in orange . Every single S-box module instantiates 6 DOM-indep multipliers

(indep1, indep2, indep3A, indep3B, indep4A, indep4B in red ). Additionally, the AES core instantiates 4 S-box modules and linear
maps for the key schedule (key lin map i, key sbox i for 0 ≤ i ≤ 3, shown in green ). The linear parts of the AES cipher, consisting of

u aes shift rowsi and u aes mix columnsi are instantiated once per share and marked in yellow .
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3.4 Description of ports

The top module of the AES design can be found in top.sv in the respective subdirectory. It
connects an RNG to the AES encryption core, which is second-order masked. The AES computes
y = enck(x) using three shares of the plaintext x s.t. x = x0 ⊕ x1 ⊕ x2 and three shares of the key
k s.t. k = k0 ⊕ k1 ⊕ k2, and outputs the three shares of the ciphertext y s.t. y = y0 ⊕ y1 ⊕ y2. In
Table 2 we give a preciser description of all input ports. In Figure 5 we give an example of the
timing of input and output signals.

Port name Direction Width Description

clk i input 1 Primary clock

rst ni input 1 Reset signal, active = 0, inactive = 1

start i input 1 Start signal for AES encryption, must be high for at least one
cycle to start AES encryption

trivium reseed i input 1 Start signal for reseeding the RNG with the given key and IV,
must be high for at least one cycle to start reseeding

busy o output 1 High if either AES encryption or Trivium reseeding is in progress
(i.e., if the current state is anything but OUTER IDLE)

aes plain i input 3 x 128 bit Shares of the plaintextt (x0, x1, x2)

aes key i input 3 x 128 bit Shares of the key (k0, k1, k2)

aes ct o output 3 x 128 bit Shares of the ciphertext (y0, y1, y2)

trivium key i input 80 Key used by Trivium RNG

trivium iv i input 80 IV used by Trivium RNG

Table 2: Description of ports for AES designs

clk_i

rst_ni

start_i

trivium_reseed_i

busy_o

trivium_key_i 5e9e3f176dc83d92629a

trivium_iv_i 4ba14af2e66f1e7f9323

aes_plain_i[0] f3423460180441e4c6b899eafe6f50dc

aes_plain_i[1] 4c07ccf12f57081c152099bb2647cd95

aes_plain_i[2] 664574b600335e9432f2df6521d79305

aes_key_i[0] 97369eea0d0dffe5fe87ecfc77c0e069

aes_key_i[1] 18f1694c3adc66c319bf3f0d2f11f783

aes_key_i[2] 0d982edc2a555687262b6a251a4b0e56

aes_ct_o[0] 798792f981ce6e6b23978fe3d73c6c97

aes_ct_o[1] 6f9ab7f21c03b666f81d73d38e690101

aes_ct_o[2] 7e493abe52978dbb60b3e9efd9db49f2

Figure 5: Timing of signals in the opt AES implementation. Note that in reality, the busy o signal
is higher for more cycles than depicted here (it was shortened to fit easier into the picture).
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4 Formal verification

As described in Section 6.2 in the paper, we formally verify our design using Coco [Gig+21] . All
the necessary files can be found in formal verification .

4.1 Directory Structure

• formal verification/coco : Source code of the modified Coco verification tool used in
the paper

• formal verification/*.fish : Verification scripts

• formal verification/*.ys , formal verification/*.cpp , formal verification/rtl/ :
additional files required for formal verification with Coco

• formal verification/build : directory used to store build artifacts such as the Verilator
model, the VCD trace file and the generated CNF formulas

4.2 Prerequisites

In order to perform formal verification for any of the following scenarios, the necessary software
needs to be installed, which includes:

• fish shell (version 3.3.1). On Ubuntu, it should suffice to install it with:

sudo apt install fish

Running which fish afterwards should return /usr/bin/fish.

• Yosys (0.32+51 (git sha1 6405bbab1, gcc 11.4.0-1ubuntu1 22.04 -fPIC -Os)). Build it from
source by cloning the github repository. Follow the build instructions there. Use commit
6405bbab1.

• Verilator (5.014 2023-08-06 rev v5.014-35-ge6b0bdd4d). Build it from source by cloning the
github repository. Follow the build instructions there. Use commit e6b0bdd4d. Additional
information can be found in Section 1.

• gcc/g++ 11.4.0

• Kissat 3.1.1. Build it from source by cloning the github repository. Follow the build instruc-
tions sthere. Use commit 71caafb.

• Python 3.10.12

• Python packages (can simply be installed with pip):

– networkx 3.1

– pickle 4.0

– dataclasses

– argparse 1.1

– json 2.0.9

– logging 0.5.1.2
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– gmpy 1.17

– pysat 0.1.8.dev9

4.3 Formally verifying the fixed DOM-dep multiplier

In Section 6.2 in the paper, we describe that we formally verify with Coco that our proposed fix
for the second-order DOM-dep multiplier is secure. The source code of the fixed multiplier is given
in sboxes/rtl/sbox fixed/aes dom dep mul gf2pn.sv .

To reproduce this, the following steps are necessary:

1. Navigate to the correct directory:

cd $ARTIFACT_HOME/formal_verification

2. Set the environment variables $YOSYS HOME DIR and $VERILATOR HOME DIR such that they
point to the installation directories. For example:

export YOSYS_HOME_DIR=$HOME/yosys/
export VERILATOR_HOME_DIR=$HOME/verilator

3. Parse the design. This verification step transforms the Verilog design into a netlist using
Yosys, and stores the netlist in graph format such that Coco can handle it. Note that in
order to correctly represent the dependence of inputs for the multiplier, we build a wrapper
file around the DOM-dep multiplier which effectively sets the input shares of A equal to the
input shares of B.

./ verify_dom_dep.fish parse

4. Trace the design. With Verilator, we now simulate the obtained netlist for a few cycle without
input data, to get values for the control signals which are used during the verification.

./ verify_dom_dep.fish trace

5. Verify the design. We now label the circuit inputs as shares, fresh randomness or unimportant
(default) to indicate their meaning during the verification. Then, we start Coco to build the
SAT formula, and check the formula with CaDiCal.

./ verify_dom_dep.fish verify

Verification takes a few seconds. The output should be:

---> Success. Design is secure.

---> Verify finished successfully.

6. As a sanity check, try to label the inputs q0 and q1 as unimportant (i.e. comment out lines
103 and 104 in verify dom dep.fish). The output should be:

---> Error. Design is NOT secure!

Leak: build/dbg -label -trace -0. txt

---> Verify finished successfully.

4.4 Formally verifying the S-box

In Section 6.2 in the paper, we describe that we formally verify with Coco that our optimized
S-box design is secure. We take the source code of the S-box from sboxes/rtl/sbox opt . Note
that the complete verification takes at least about 1.5-2 days.
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The following steps are necessary:

1. Navigate to the correct directory:

cd $ARTIFACT_HOME/formal_verification

2. Set the environment variables $YOSYS HOME DIR and $VERILATOR HOME DIR such that it points
to the installation directories. For example:

export YOSYS_HOME_DIR=$HOME/yosys/
export VERILATOR_HOME_DIR=$HOME/verilator

3. Parse the design. For more details on this see Section 4.3. This time we do not need a
wrapper top module.

./ verify_sbox_opt.fish parse

4. Trace the design. For more details on this see Section 4.3.

./ verify_sbox_opt.fish trace

5. Verify the design. For more details on this see Section 4.3. To verify the complete S-box, the
verification needs to run for 11 cycles (because the design is idle the first few cycles). Hence,
to verify everything until the data reaches the pipeline registers in stage 4 (cf. Figure 1 in
the paper) it needs 10 cycles, everything until stage 3 needs 9 cycles, everything until stage 2
needs 8 cycles, and only the first stage needs 7 cycles. Building the SAT formulas is very fast,
even for 11 cycles. The main bottleneck is solving the SAT formulas, which is why we rely on
Kissat, a more efficient solver. Running the following command will print the SAT formulas
in DIMACS CNF format and store them to formal verification/build/formulas :

./ verify_sbox_opt.fish verify

Per default it also starts solving with CaDiCal, which can however simply be cancelled.

6. To solve the SAT formulas with Kissat, first set the environment variable $KISSAT HOME DIR

to the installation directory, e.g.:

export KISSAT_HOME_DIR=$HOME/kissat

7. Start Kissat with the following command:

cat build/formulas/formulasecret0_.cnf build/formulas/allsame.cnf

| $KISSAT_HOME_DIR/build/kissat --unsat

There exists one formula per secret bit. To get a full security proof, all formulas need to be
solved. A secret bit is not leaking if the SAT formula is UNSAT. In this case, the output of
Kissat contains:

c ---- [ result ] ------------------------------------------------------------

c

s UNSATISFIABLE

c

8. (Optional) As already mentioned before, solving for 11 cycles will take at least about 1.5-2
days. Alternatively, S-box can be checked for less cycles, i.e., verifying only the until the first,
second, third, ... etc pipeline stage. To do so, modify line 115 in verify sbox opt.fish

such that the SAT formulas are built for less cycles. Solving these SAT formulas is then much
faster, and it gives confidence for the first few pipeline stages, although of course not the
complete S-box is verified.
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9. (Optional) As a sanity check, try to label label the fresh randomness prd i as unimportant
(i.e. comment out line 103). Even for 11 cycles and solving with CaDiCal it quickly (2-3
seconds) points out leakage.

5 Experimental verification

As described in Section 6.3 in the paper, we experimentally verify our design on an FPGA board.
All the necessary files can be found in experimental verification .

5.1 Directory Structure

• experimental verification/cotg vivado : Vivado project including constraint files, a
Verilog wrapper to communicate with the CW microcontroller and our opt AES architec-
ture.

• experimental verification/Cw305 AES cotg.py : Script to obtain power traces

• experimental verification/requirements.txt : Python packages which need to be in-
stalled to run the measurement script

• experimental verification/cw305 opt.bit : Bitstream file containing our optimized AES
implementation

• experimental verification/cw305 defines.v : Used by measurement script

• experimental verification/data : Used to store traces and t-test results

– experimental verification/data/traces 11282023 160108.npy : Example set of power
traces when measuring our opt design.

– experimental verification/data/traces 11282023 160108.npy : Example trigger
signal.

5.2 Evaluation devices

Our evaluation setup consists of the following devices:

• The FPGA evaluation board: NAE-CW305-04-7A100-0.10-X

• An external power supply: R&S HM7042-5

• An oscilloscope: PicoScope 6404C

• A PC running Ubuntu 22.04.2 LTS

• An SMA cable for recording the power trace

• A cable to connect to the external power supply

• A probe for synchronizing the clock signal: TA133 (10:1, 500MHz)

• A probe for recording the Trigger: TA375 (1:1, 500MHz)

• An USB-A cable for connecting the board to the PC
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5.3 Evaluation setup

We show the finished setup in Figure 6a, Figure 6b and Figure 6c. In order to reproduce this,
follow these steps:

1. Connect X4 with the SMA cable to Channel A of the PicoScope (see 1 in Figure 6a and
Figure 6b).

2. Connect TP1 with the 1:1 probe to Channel B of the PicoScope (see 2 in Figure 6a and
Figure 6b).

3. Connect P4 with the 10:1 probe to the AUX in connector of the Picoscope (see 3 in Figure 6a
and Figure 6c).

4. Connect the board to the exernal power supply (see 4 in Figure 6a and Figure 6b). The
external supply should be set to output 1V. The switch located right below the positive
banana jack input must be set to ”external”.

5. Connect the board to the PC via USB (see 5 in Figure 6a).

5.4 Recording power traces

In order to record a power trace, the following steps are necessary:

1. Install the necessary software:

• ChipWhisperer framework. Follow the build instructions here. Use commit a1fa53bf59
from the github repository.

• PicoScope 7 Software and Drivers. Follow the instructions here. This should include the
picosdk-python-wrappers.

• Further required Python libraries and their respective versions are listed in requirements.txt .
This includes SCALib 0.5.5, numpy 1.24.3, and pycryptodome 3.18.0. They can be in-
stalled using the command:

pip install -r requirements. txt

• Vivado 2021.1

2. Navigate to the correct directory:

cd $ARTIFACT_HOME/experimental_verification

3. Start Vivado and import project:

vivado -source project.tcl

The project should be created without errors. It includes all constraints file, source files and
a wrapper to communicate with the CW microcontroller.

4. Generate the bitstream by pressing the ”Generate bitstream” button. Alternatively, we pro-
vide a pre-generated bitstream file ( cw305 opt.bit ).

5. Adapt the measurement script Cw305 AES cotg.py .

• Fill in the correct name/path of the bitstream file in line 38.
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• Recording is done by capturing N traces per block. The number of blocks is M . Both
parameters can be set in lines 565 and 566.

• (Optional) The design operates on a clock frequency of 1.5625MHz. If you want to run
the measurement on another frequency, adapt the FpgaClkFreq in line 67.

• (Optional) If you want to use other channels of the PicoScope, or do not want to use
the external clock, do the modifications in lines 369-379.

• (Optional) The PicoScope sampling rate is set to 6.25Ms/s (timebase 3 = sample interval
1.6 ns). It can be changed in line 396.

• (Optional) One trace consists of 22600 samples. This can be changed in lines 573 and
575.

6. Run the measurement script:

python3 Cw305_AES_cotg.py --univ -ttest

The script first programs the FPGA, performs some functionality tests (i.e. sending a random
plaintext and key to the FPGA, reading back the encryption result and comparing it with an
AES implementation in Python), configures the PicoScope and then starts the measurements.
N traces are recorded, and the t-test results are updated. After plot delta have been
recorded, the intermediate t-test results are stored in data/ . The traces are not stored. To
store the traces and trigger signal, run:

python3 Cw305_AES_cotg.py --univ -ttest --store -traces --with -trigger

7. Plot a sample power trace and trigger signal:

python3 plot_traces.py --traces data/traces_.xxx.npy

--trigger data/trigger_.xxx.npy

We provide an example trace and trigger signal in the data/ directory.
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(a) FPGA evaluation board

(b) Oscilloscope and external power supply

(c) Oscilloscope from the back

Figure 6: Measurement setup
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6 Generation of area numbers

For synthesizing our designs and obtaining area numbers, we used a proprietary toolchain which is
not freely available. This toolchain consisted of:

• Cadence Genus Synthesis Solution 19.11-s087 1

• Standard cell library: UMK65LSCLLMVBBR B (based on UMC’s 65nm Low-K Low Leakage
process)

• To compute the area in kGE, we use the area of one NAND gate with two inputs (ND2),
which is 1.44µm2.

Using this toolchain to synthesize the designs given in Section 2 and Section 3 will give the area
numbers as shown in Table 1, Table 3a and Table 3c in the paper.

6.1 Alternative open-source synthesis flow

We provide an alternative synthesis flow based on Yosys and the NanGate Open Cell Library.
Although it does not allow to reproduce the exact area numbers from the paper, the results are
similar. In the directory area we provide Yosys synthesis scripts. In order to obtain area numbers
for a specific design, the following steps are necessary:

• Download/install the prerequisites:

– Yosys (0.32+51 (git sha1 6405bbab1, gcc 11.4.0-1ubuntu1 22.04 -fPIC -Os)). Build it
from source by cloning the github repository. Follow the build instructions there. Use
commit 6405bbab1.

– Download the NanGate OCL liberty file here. This is revision 1.0 (Thu 10 Feb 2011,
18:11:20). Copy it to the area directory.

– (Optional - only if you want to obtain area numbers for the complete AES design) sv2v
(v0.0.11-17-g764a11a). Build it from source by cloning the github repository. Follow the
build instructions there. Use commit 764a11af7f86.

• Navigate to the correct directory:

cd $ARTIFACT_HOME/area

• Set the environment variable $YOSYS HOME DIR such that it points to the Yosyxs installation
directory. For example, if you cloned the Yosys repository in $HOME, it should be set to
$HOME/yosys, e.g.:

export YOSYS_HOME_DIR=$HOME/yosys

• If you want to obtain area numbers for the complete AES design, we need to first convert our
SystemVerilog AES design to Verilog because Yosys only has limited SystemVerilog support.
For that, set the environment variable $SV2V HOME DIR. For example, if you cloned the sv2v
repository in $HOME, it should be set to $HOME/sv2v/bin, e.g.:

export SV2V_HOME_DIR=$HOME/sv2v

• Start the synthesis process with using the Makefile. For example, to synthesize our optimized
S-box design, run:
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make area_sbox_opt

There are multiple targets available, including:

– area sbox opt, area sbox fixed: building S-boxes from Table 1

– area aes opt, area aes opt nocotg, area aes fixed: building AES architectures from
Table 3b, converts it to Verilog first

• Observe the output of the command, which somewhere in the last lines says:

Chip area for module ’\aes_sbox_dom ’: 3471.034000

This is the area given in µm2.

• Convert the computed area to kGE. The area of one NAND2 X1 gate is 0.798µm2. For example,
the area of the sbox opt design would then be approximately 4.3 kGE.
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