
A Faster-Third-Order Masking of Lookup Tables 

The provided c code is to run the third-order look-up table (LUT) scheme. Our code supports the 

masked execution of AES and PRESENT block-ciphers using third-order LUT. This program is free 

software; you can redistribute it and/or modify it under the terms of the  GPL-3.0 license. 

It also provides source code for: 

• 32 bit bitsliced implementation taken from https://github.com/annapurna-pvs/Higher-Order-LUT-

PRG)  

• Rivain-Prouff’s implementation taken from https://github.com/coron/htable 

• Coron’s Increasing shares variant taken from https://github.com/coron/htable 

• Coron’s Increasing shares variant with LRV taken from https://github.com/coron/htable 

Remark: Some methods from these files have been customised to meet the target architecture 

requirements.  

Files like “aes.c”, “aes.h”, “aes_rp.c” and “share.c” are taken from a github repository having open 

access licence (https://github.com/coron/htable/tree/master/src). 

The parameter “nt” (main.c) indicates the number of times to repeat the execution of a function. We 

have taken the average across 10 executions for the online phase of our scheme. While measuring 

the execution time of the offline phase, we manually ran the experiment 10 times and have taken 

the average. The reason being the offline phase of our scheme is computationally heavy. 

Source Code Organisation: 

The main.c is the starting point of the code.  

There are four main sub-folders in the “FASTER-THIRD-ORDER-MASKING” folder. They are: 

• Util: contains all the functions which is used across various schemes, as well as the RNGA 

function for random number generation 

• PRESENT: contains the functions related to running the third-order scheme for PRESENT 

• BITSLICE: contains the functions related to running the 32-bit bitsliced implementation 

• AES: This folder contains the code related to running the customised third-order scheme for 

AES, Rivain-Prouff’s RP implementation, Coron’s higher-order increasing shares scheme and 

its LRV variant. 

Remark: Since we are interested in only the third-order implementation, the number of shares has 

been hardcoded to 4 and it is recommended not to change it  

To run the chosen scheme: 

• The variable “cipher” (main.c) can be set to “AES_THIRD”/”PRESENT_THIRD” to run our 

customised scheme for AES/PRESENT in third order respectively.  

• Set "cipher"(main.c) as "AES_HIGHER_ORDER_INCREASING_SHARES" and the variable 

"type"(main.c) as "BASIC" or "LRV" depending on your choice, to run corons generic higher 

order increasing shares scheme (without or with LRV) 

• Set  “cipher” as "BITSLICE" OR "AES_RP" to run the 32-bit masked bitsliced AES-128 or 

Rivian-Prouff's third-order instantiation respectively. 

 

https://github.com/annapurna-pvs/Higher-Order-LUT-PRG
https://github.com/annapurna-pvs/Higher-Order-LUT-PRG
https://github.com/coron/htable
https://github.com/coron/htable
https://github.com/coron/htable


The code can either run on the target microcontroller or on a desktop.  

Set the value of TRNG(in Utils/common.h) to "zero (0)" to run on a desktop (where the random seed 

is obtained using AES-CTR PRG) or to "one(1)" to use the device built-in RNGA.  

This code will include the appropriate header files depending on the choice of TRNG parameter. S-

CTR PRG) or to "one(1)" to use device built-in RNGA. 

The Table below provides an overview of the ciphers the code can run as mentioned in the paper 

along with their configurations in the code. 

SCHEME NAME (as in the 
paper) 

CIPHER-NAME TYPE 

Our_Scheme (AES) AES_THIRD BASIC 
 

Our_Scheme (PRESENT) PRESENT_THIRD BASIC 

[CRZ18] (Increasing 
shares) 

AES_HIGHER_ORDER_INCREASING_SHARES BASIC 

[CRZ18] (Increasing 
shares wit LRV) 

AES_HIGHER_ORDER_INCREASING_SHARES LRV 

[GR17] (Bitslicing) BITSLICE BASIC 
 
 

[RP10] AES_RP BASIC 

 

To Run on Desktop: 

Running the code on the desktop machine is seamless and can be run without editing the software 

code. 

1. In the Makefile, set OS=1/0 depending on whether you are running on a windows or Linux 

system.  

 
2. Run the command “make” on the command line to generate the output files 

3. Run the command  “./output h” to helps to understand how to run the code in the 

command-line.  



 

4. Choose the Cipher-Value of the scheme to run, along with the Type-Value. 

 

5. Run the command ./output [CIPHER-VALUE] [TYPE-VALUE] 

 

For e.g .: If you want to run the scheme AES_RP of Type BASIC, you should run the 

command: ./output 5 1 

 

 
6. The output from the code is:  

a)  Indicative flag of execution status: success/failure 

b) On successful execution, the offline and the online execution times indicate the 

pre-processing time and online time, respectively and the memory consumed. 

NOTE: The timings and memory consumed when running on a desktop may not reflective of the 

values shown in the paper, as those values are based on running on a resource-constrained 

microcontroller. 

 

To Run on the microcontroller 

The code is written in C language and hence can be run in ANY embedded software 

development IDE like Keil MDK-ARM by Keil[, SEGGER Embedded Studio, eclipse, Kinetis 

Design Studio etc.  

Remark: We used KEIL IDE and adjusted the settings as mentioned below to compile the 

code and obtaining results. The similar settings can be found on the respective IDE chosen. 

The target device used is NXP-FRDM-k64F development platform. The microcontroller used in 

the development platform is MK64FN1M0VLL12, based on ARM Cortex-M4 processor having a 

256 KB RAM, 1 MB flash memory and a clock frequency of 120 MHz. For debugging the code, we 

used “JLINK cortex” from SEGGER. 

 

https://en.wikipedia.org/wiki/Keil_(company)
https://en.wikipedia.org/wiki/List_of_ARM_Cortex-M_development_tools#cite_note-25


We compile our implementations using the −O1 flag. This flag can be set by following the below 

steps: 

1. Right click on Target and then select “options for Target” 

2. click  C/C++ (AC6) 

3. Change the optimization from default to O1, click ok 

 
4. Right click on Source Group and then select options for “Source Group” 

5. click  C/C++ (AC6) 

 
6. Change the optimization from default to O1, click ok 

To run the code on target architecture 

• First build the code by clicking Project->Build Target 

• Once build is successful, click on debug ->Start/Stop debug session 

 

Calculating the Memory Consumed 

Once the build is successful, the output is given as below: 



 

Total RAM memory consumed by the program can be calculated as: 

Total RAM= RW data + ZI-data 

 

To calculate the clock cycles required: 

We calculate the clock cycles required by the scheme using the 24-bit SysTick timer, which is present 
on nearly all Cortex-M processors. 
 
For scheme AES_THIRD, PRESENT_THIRD, AES_HO_I_S: 

• Set the array time[] as size nt+1  

• where time[0] will indicate the offline timings  

• time[i] from i=1 to nt indicates the online time required during each iteration of the 

function. 

• The average online time can be calculated by adding time[i] from 1 to nt, and dividing the 

sum by nt. 

Remark : The time[] array of size nt+1 was required, as otherwise the microcontroller was throwing 

hard fault error. 

 

 

For Circuit based scheme (BITSLICE/AES_RP) 

We added a break point for the function we want to measure the execution times and we read the 

value from the “states register” before and after the function execution. By subtracting the values 

before and after the function execution, we computed the timings. Divide the computed timing by 

“nt”.  



  (before executing function) 

 (after executing function) 

Difference = 10766858-86606=10680252 =10.6M clock cycles 

Div by nt (nt=10) = 1.06M clock cycles. 

 

 

 

 

 

 

 


