A Faster-Third-Order Masking of Lookup Tables

The provided c code is to run the third-order look-up table (LUT) scheme. Our code supports the
masked execution of AES and PRESENT block-ciphers using third-order LUT. This program is free
software; you can redistribute it and/or modify it under the terms of the GPL-3.0 license.

It also provides source code for:

e 32 bit bitsliced implementation taken from https://github.com/annapurna-pvs/Higher-Order-LUT-
PRG)

e Rivain-Prouff’s implementation taken from https://github.com/coron/htable

e Coron’s Increasing shares variant taken from https://github.com/coron/htable

e Coron’s Increasing shares variant with LRV taken from https://github.com/coron/htable

Remark: Some methods from these files have been customised to meet the target architecture
requirements.

2

Files like “aes.c”, “aes.h”, “aes_rp.c” and “share.c” are taken from a github repository having open
access licence (https://github.com/coron/htable/tree/master/src).

The parameter “nt” (main.c) indicates the number of times to repeat the execution of a function. We
have taken the average across 10 executions for the online phase of our scheme. While measuring
the execution time of the offline phase, we manually ran the experiment 10 times and have taken
the average. The reason being the offline phase of our scheme is computationally heavy.

Source Code Organisation:
The main.c is the starting point of the code.
There are four main sub-folders in the “FASTER-THIRD-ORDER-MASKING” folder. They are:

e Util: contains all the functions which is used across various schemes, as well as the RNGA
function for random number generation

e PRESENT: contains the functions related to running the third-order scheme for PRESENT

e BITSLICE: contains the functions related to running the 32-bit bitsliced implementation

e AES: This folder contains the code related to running the customised third-order scheme for
AES, Rivain-Prouff’s RP implementation, Coron’s higher-order increasing shares scheme and
its LRV variant.

Remark: Since we are interested in only the third-order implementation, the number of shares has
been hardcoded to 4 and it is recommended not to change it

To run the chosen scheme:

e The variable “cipher” (main.c) can be set to “AES_THIRD”/”PRESENT_THIRD” to run our
customised scheme for AES/PRESENT in third order respectively.

o Set "cipher"(main.c) as "AES_HIGHER_ORDER_INCREASING_SHARES" and the variable
"type"(main.c) as "BASIC" or "LRV" depending on your choice, to run corons generic higher
order increasing shares scheme (without or with LRV)

e Set “cipher” as "BITSLICE" OR "AES_RP" to run the 32-bit masked bitsliced AES-128 or
Rivian-Prouff's third-order instantiation respectively.

https://github.com/annapurna-pvs/Higher-Order-LUT-PRG
https://github.com/annapurna-pvs/Higher-Order-LUT-PRG
https://github.com/coron/htable
https://github.com/coron/htable
https://github.com/coron/htable

The code can either run on the target microcontroller or on a desktop.

Set the value of TRNG(in Utils/common.h) to "zero (0)" to run on a desktop (where the random seed
is obtained using AES-CTR PRG) or to "one(1)" to use the device built-in RNGA.

This code will include the appropriate header files depending on the choice of TRNG parameter. S-
CTR PRG) or to "one(1)" to use device built-in RNGA.

The Table below provides an overview of the ciphers the code can run as mentioned in the paper
along with their configurations in the code.

SCHEME NAME (as in the | CIPHER-NAME TYPE
paper)

Our_Scheme (AES) AES_THIRD BASIC
Our_Scheme (PRESENT) PRESENT_THIRD BASIC
[CRZ18] (Increasing AES_HIGHER_ORDER_INCREASING_SHARES | BASIC
shares)

[CRZ18] (Increasing AES_HIGHER_ORDER_INCREASING_SHARES | LRV
shares wit LRV)

[GR17] (Bitslicing) BITSLICE BASIC
[RP10] AES_RP BASIC

To Run on Desktop:

Running the code on the desktop machine is seamless and can be run without editing the software
code.

1. Inthe Makefile, set 0S=1/0 depending on whether you are running on a windows or Linux
system.

Help Makefile - Faster-Third-Order-Masking-of-Lookup-Tables - Visual Studio Code

mainc M ® common.h M present_htable_PRG.c M bitslice.c M shar]

file

0s =1

output: main.o aes.o aes_htable PRG.o aes_Shares_prg.o present.o present_
gce main.o aes.o aes_htable PRG.o aes_Shares_prg.o present.o pres

common.o: Util/common.c
gcc -c -01 -pedantic -Wall -Wextra -DTRNG=@ Util/common.c

main.o: main.c
gce -c -01 -pedantic -Wall -Wextra -DTRNG=0 -DOS=%(0S) main.c

aes.o: AES/aes.c
gce -c -01 -pedantic -Wall -Wextra -DTRNG=8 AES/aes.c

aes_htable PRG.o: AES/aes_ htable PRG.C
gcc -c -01 - = 3 . C
2. Runthe command “make” on the command I|ne to generate the output files
3. Runthe command “./output h” to helps to understand how to run the code in the

command-line.

Lookup-Tables> . /output h
CHOOSE THE CIPHER-VALUE AND THE TYPE-VALUE

CIPHER-VALUE TYPE-VALUE
AES_THIRD:1 |BASIC:1
PRESENT THIRD:2 |BASIC:
BITSLICE:3 |BASIC:

AES_HIGHER ORDER_TINCREASING SHARES:4 |BASIC:
AES RP:5 |BASIC:

COMMAND TO RUN THE CODE: ./output [CIPHER-VALUE] [TYPE-VALUE]

COMMAND TO RUN HELP: ./foutput h

4. Choose the Cipher-Value of the scheme to run, along with the Type-Value.
5. Runthe command ./output [CIPHER-VALUE] [TYPE-VALUE]

For e.g .: If you want to run the scheme AES_RP of Type BASIC, you should run the
command: ./output 51

Lookup-TablesS Joutput 51
Successtul execution of AES using P
(ML11 seconds) Overall timings:@. 365360

Inage Nane PID Session Nane ~ Session hem Usage

1,260 K

6. The output from the code is:
a) Indicative flag of execution status: success/failure
b) On successful execution, the offline and the online execution times indicate the
pre-processing time and online time, respectively and the memory consumed.

NOTE: The timings and memory consumed when running on a desktop may not reflective of the
values shown in the paper, as those values are based on running on a resource-constrained
microcontroller.

To Run on the microcontroller

The code is written in C language and hence can be run in ANY embedded software
development IDE like Keil MDK-ARM by Keil, SEGGER Embedded Studio, eclipse, Kinetis
Design Studio etc.

Remark: We used KEIL IDE and adjusted the settings as mentioned below to compile the
code and obtaining results. The similar settings can be found on the respective IDE chosen.

The target device used is NXP-FRDM-k64F development platform. The microcontroller used in
the development platform is MK64FN1MOVLL12, based on ARM Cortex-M4 processor having a
256 KB RAM, 1 MB flash memory and a clock frequency of 120 MHz. For debugging the code, we
used “JLINK cortex” from SEGGER.

https://en.wikipedia.org/wiki/Keil_(company)
https://en.wikipedia.org/wiki/List_of_ARM_Cortex-M_development_tools#cite_note-25

We compile our implementations using the —O1 flag. This flag can be set by following the below

steps:

1. Right click on Target and then select “options for Target”
2. click C/C++ (AC6)
3. Change the optimization from default to 01, click ok

g) mainc) commonh) startup MKSAF1ZS
= "% Project: Test! v
= @2 Target1 297 /¢ Reset Handler
5 &9 Source Group 1 258
9) mainc 299 «~thun [Options for Target Target 1
5B sesc 300 .alig
s -weak Device | Torget | Output | Listing | User C/Cos (ACE) | Asm | Liker | Debug | Ukites |
) aesh 302 .Type
VP
) ses_htable RP.c 303 t Han Praprcaseer Syubics
L) aes_htable RO.h 304 cpsid
a T 308 equ Defre: |
@) aes_Shares_prg.c o [
) common.c 307 ldr e
] commonh 308 stz >
) driver_functions.h 309 1dr - g { Ol Qurwcnier % =
D shorec 838 mes Eendvay e jamings: [Wamngs ~] LanguageC: [c39 =l
) shareh s Optmazation: [01 ~] ™ Tum Wamings rto Erors Language Cos: [eontt =]
are. 1 blx
Gdad>
5) ses_htable PRG.c 313 cpsie I Plain Charis Sgned ¥ Shot enuma/wehar
L) aes_htable_prgh ;:; iar I ReadOnly Postion Independert [~ use RTTI
4 @ Board Support e = ™ Read-Witte Posttion independent |~ No Auto Includes
W9 cmsis 317 .pool :]
3 @ Device 318 .s1ze
319
320 .alig
— (ChuE Conpler [xdcS tp: 416 ot sbishard <
322 weak e:r: inoth 4unsigned-char 4shot-enums 4shoft whar
Build Output 1 -
Cancel | [Detouts | [The |

| T

4. Right click on Source Group and then select options for “Source Group”

5. click C/C++ (AC6)
%)

File Edt View Project Flash Debug Peripherals Tools SVCS Window Help
Sde a " E iE - Ser@-lecoa-E-
S e ¥4 Target Kd=ev@
Project L |] mainc |] commonh] startup MKS4FI2S v x
A Project Test! v
= &9 Torget1 297
=) &% Source Group 1 298
@) mainc 299 ~ehun [Options for Group ‘Source Group 1'
s 300 alig
0 '“; 301 -weal propeties C/Ce+(ACH) | Asm |
aes 302 -type
@] aes_htable RP.c 303 an Preprocestor Symbols
L) aes_htable RP.H 304 cpsiq
308 equ Define: |
) aes_Shares_prg.c 306 145
) commonc 307 1ar okt
] commonh 308 str rr——
309 1dr LR e
j driver_functions.h o sizd ¥ Execute-only Code Wamings: [No Wamings v] Language C: [defauits ~
@) sharec - s
D shaveh :i; E?\; Optimization: |-01 | 7 Tum Wamings into Erors Language Ces: [cdefant> v
1 Belait> - Sgned enuma wchar
L) aes_htable PRG.c 313 cpsid | LnkTme 7 Plain Ovaris 7 Short enums.
1) aes_htable_prg.h 314 ldzr 7 Soit Load Ji5l 7 Read-Only Postion Independert 7 use RTTI
= 31s bx - 492 7 Read-Wite Postion Independent 7 No Auto Includes
5 @ Board Support Sié F One ELF 2’3” o
o @ cmsis 317 .pool Inchude FO“’"‘“"]
o @ Device 318 .31z Paths | | Oz image sze
319 Msc
320 .alig Controls r
a2 SR Compler [d=c9 376 host sbichard <
322 ~weal c;l'r: {no-t funsigned-char shot-enums fshot-wchar
Build Output | B @
Ok | [conce | [Defaurs | [ho] -
J-UNK / J-TRACE Cortex Lo CAP NUM SCRL OVR R /W
2¢ =l - s ENG 112
™ Partly cloudy l= D = O = - e @ U O i [/] G o N ‘ = ABG N TOD L ©

6. Change the optimization from default to 01, click ok
To run the code on target architecture

o First build the code by clicking Project->Build Target
e Once build is successful, click on debug ->Start/Stop debug session

Calculating the Memory Consumed

Once the build is successful, the output is given as below:

P ARLLAVEVLILE WINWILILOVVLLLS WINVILAJLSAAALS LLIGOU QWL (&1] WALULUY, LUJLIW, 0OU JTLLLL

Program Size: Code=8292 RO-data=143¢ RW-data=45 II-data=4420

Total RAM memory consumed by the program can be calculated as:

Total RAM= RW data + ZI-data

To calculate the clock cycles required:

We calculate the clock cycles required by the scheme using the 24-bit SysTick timer, which is present
on nearly all Cortex-M processors.

For scheme AES_THIRD, PRESENT_THIRD, AES_HO_|_S:

e Set the array time[] as size nt+1

e where time[0] will indicate the offline timings

e time[i] from i=1 to nt indicates the online time required during each iteration of the
function.

e The average online time can be calculated by adding time[i] from 1 to nt, and dividing the
sum by nt.

Remark : The time[] array of size nt+1 was required, as otherwise the microcontroller was throwing
hard fault error.

Disassembly

EDOX00002E3E 4628 MOV £0,x8

] main.c) commonh] startup MK64FI2.S

¢ 110

¢ nt

@ shares

5

L1 BreakList BreakSet BreakAccess COVERAGE COVIOFILE ‘ #1Call Stack « Locals |]

For Circuit based scheme (BITSLICE/AES_RP)

We added a break point for the function we want to measure the execution times and we read the
value from the “states register” before and after the function execution. By subtracting the values
before and after the function execution, we computed the timings. Divide the computed timing by
llntll.

Register Value o

20B6A19
x978511DC

[T

B
«

(before executing function)

Register Value =
(x00000000
(xADODD000
R4 (20001158

R12 (x040F0000

R13 (SP) (20001120
0

[0

[+

<]

(after executing function)
Difference = 10766858-86606=10680252 =10.6M clock cycles

Div by nt (nt=10) = 1.06M clock cycles.

