
Read Me

Artifacts for TCHES’2022, Issue 3: Submission #35

This document is a brief introduction of the artifacts for the accepted paper “On Efficient and
Secure Code-based Masking: A Pragmatic Evaluation” (Submission #35) for TCHES’2022,
Issue 3.

1 About Artifacts

The artifact consists of five implementations for AES-128 masked by code-based masking.

• 2-share BM: a specific implementation tailored for the generator matrix A shown in
Table 1. Since the generator matrix is fixed, no input is required.

• 2-share IPM: a specific implementation tailored for the generator matrix A (with
L1 = 91) shown in Table 1. Since the generator matrix is fixed, no input is required.

• 3-share BM: a specific implementation tailored for the generator matrix A shown in
Table 1. Since the generator matrix is fixed, no input is required.

• 3-share IPM: a specific implementation tailored for the generator matrix A (with
L1 = 91 and L2 = 239) shown in Table 1. Since the generator matrix is fixed, no input
is required.

• General case: the generic implementation that can be fed with any legal generator
matrix A. Recall that A is an (k + m) × n matrix over F(k+m)×n

28 , for n ≥ k + m.
Since it is generic, some inputs (e.g. the generator matrix A) should be prepared and
some parameters should accordingly be tuned (e.g., k, m, and n). All the relevant
inputs and parameters are defined in the source file “aes.c” and detailed in the anno-
tations. However in the current version, this implementation has been well-tuned for
the same generator matrix A as in “2-share IPM”, hence it can run normally with no
modification.

It is worth noting that specific implementations (including “2-share BM”, “2-share IPM”, “3-
share BM”, and “3-share IPM”) are fully-optimized for speed, and they are used to conduct
a direct comparison regarding computational overhead (introduced in Section 3.5 of the
paper submission) with the implementations in [BFG+17]. Hence we actually follow the
same setting of parameters (the L1 and L2 in Table 1) with [BFG+17], which differ from the
parameters utilized for security evaluations in Section 4 of the paper submission. However,
according to our implementation strategies, the computational overhead is irrelevant with the
parameters (the L1 and L2 in Table 1) of the generator matrix A as long as the parameters
are greater than 1. Hence from a perspective of performance (in clock cycles), the “2-
share IPM” and “3-share IPM” implementations should be constant-time regardless various
choices of L1 and L2 of A for L1, L2 ≥ 1. Whist the “general” implementation is designed
for trace acquisition for the security evaluation detailed in Section 4 of the paper submission.

2-share BM 2-share IPM 3-share BM 2-share IPM

A

1 0

1 1

 1 0

L1 1

1 0 0

1 1 0

1 0 1

1 0 0

L1 1 0

L2 0 1

Table 1: various choices of generator matrix A over F(k+m)×n

28 for different implementations.

2 Running the Codes

2.1 Compiling

Our implementations are tailored for LEGACY STM32F407 (specifically STM32F407VG)
whose micro-controller is ARM Cortex-M4. To compile the codes, arm-none-eabi-gcc tool-
chain and a couple more libraries for the STM32F407 (STM32F4xx StdPeriph Driver and
CMSIS) are required. The required libraries are included in the artifact and stored in the
directory called “STLib”.

In order to get everything up and running, here are the steps to follow (we provide the steps
using a Linux shell syntax). Note that the steps are consistent among the 5 implementations
to build the artifacts, here we set 2-share BM as the example.

1. Install the arm-none-eabi-gcc tool-chain first and add the address of tool-chain to the
PATH (system environment variable), or you can change the value of TOOLCHAIN PATH
in Makefile to the address of the tool-chain where you installed it (shown below). Note
that the tested gcc version is 10.3.1 20210621 (release) (GNU Arm Embedded Toolchain
10.3-2021.07).

1 TOOLCHAIN_PATH=/yourAddress/arm-gcc/gcc-arm-none-eabi-10.3-2021.07/bin/

2. Compile the code step by step as below. After compiling, a HEX file called “main.hex”
will be obtained as the firmware for the STM32F407 board.

1 $ cd */2-share_BM

2 $ make clean

3 $ make

2.2 Programming the Codes

To flash the firmware onto the board, you can use stlink tool or other researchers and
designers. To use stlink tool for programming, please go for https://github.com/stlink-
org/stlink to see the tutorial and install this tool. After installing, you can use the command
lines below to flash the firmware.

1 $ cd addressOfStlink/stlink/build-mingw/bin

2 $./st-flash --format ihex write addressOfImplementations/2-share_BM/main.hex

2.3 Communicating with the board

All implementations in this artifact are designed for the same communication way. To
communicate with the board by PC, you may need a USB to UART serial communication
module and FT232 is recommended. On the board, the pin PA2 is utilized to send messages,
while the pin PA3 is set to receive messages. Below we will show how to use the shell
command to communicate with the board. Also, other serial communication assistants on
PC can work well with the board for communication.

First, baud rate should be set to 9600.

1 $ stty -F /dev/ttyUSB0 raw speed 9600 -echo

And you can use the command line to check if the baud rate is correct.

1 $ stty -F /dev/ttyUSB0

There are four types of messages for communication. The length of each type of message is
two bytes. The first byte is commonly set to “80”(hexadecimal) as an identifier, while the

https://github.com/stlink-org/stlink
https://github.com/stlink-org/stlink

second byte represents various instructions. Hence after receiving a message, the board will
firstly check whether the identifier byte is correct or not. If correct, the board will reply
with the second byte of the received message right after. If not, the board will discard and
ignore this message until the identifier byte emerges. The four instructions represented by
the second byte are shown below. Note that the command strings of related examples shown
below are all hexadecimal.

• Assign the key. The byte code is “12”(hexadecimal). This instruction is to set the
key value (the key already has the initial value) stored in the RAM of the board. After
receiving the reply from the board, the key value (for 16 bytes in total) should be
issued continuously byte by byte. If the board receives the 16 bytes successfully, it will
change the key value. Then it will reply with a fixed code “91”(hexadecimal). Usually,
this instruction will be issued first.

1 PC: 80 12 // instruct the board to assign the key

2 board: 12 // reply

3 // recive the correct reply and send the 16 bytes key

4 PC: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

5 board: 91 // have set the key

To communicate with board by shell, two terminals may be required. one (T1) is for
transmitting data to the serial port, and the other one (T2) is for printing the data
from the board.

1 T2: $ hexdump -C -n 1 /dev/ttyUSB0

2 T1: $ echo -e -n "\x80\x12" > /dev/ttyUSB0

3 // "12" shall be print on T2

4 T2: $ hexdump -C -n 1 /dev/ttyUSB0

5 T1: $ echo -e -n "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\

x0d\x0e\x0f" > /dev/ttyUSB0

6 // "91" shall be printed on T2

• Instruct to encrypt. The byte code is “04”(hexadecimal). This instruction is to
instruct the board to encrypt with the issued plaintexts (the plaintexts already have
the initial value stored in the RAM of the board). After receiving the reply from the
board, the plaintexts (for 16 bytes in total) for encryption should be issued continuously
byte by byte. If the board receives the 16 bytes successfully, it will reply with a fixed
code “92”(hexadecimal) first and then starts the AES-128 encryption (masked by code-
based masking) with the received plaintexts. After the encryption, the board will send
a fixed byte code “93”(hexadecimal) for the status reminder. Right after it will send 4
bytes to transfer the clock cycle results counted for such an encryption process. Note
that this is a Little Endian transmission for 32-bit data. Usually, this instruction is
utilized for trace acquisition.

1 PC: 80 04 // instruct the board to encrypt with the issued plaintexts

2 board: 04 // reply

3 // recive the correct reply and send the 16 bytes plaintexts

4 PC: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff

5 board: 92 // have received the plaintexts and start the encryption

6 board: 93 // remind that the encryption is completed

7 board: b6 5d 02 00 // the true clock cycle is 0x00025db6

To communicate with board by shell, two terminals may be required. one (T1) is for
transmitting data to the serial port, and the other one (T2) is for printing the data
from the board.

1 T2: $ hexdump -C -n 1 /dev/ttyUSB0

2 T1: $ echo -e -n "\x80\x04" > /dev/ttyUSB0

3 // "04" shall be print on T2

4 T2: $ hexdump -C -n 6 /dev/ttyUSB0

5 T1: $ echo -e -n "\x00\x11\x22\x33\x44\x55\x66\x77\x88\x99\xaa\xbb\xcc\

xdd\xee\xff" > /dev/ttyUSB0

6 // "92 93 b6 5d 02 00" shall be printed on T2

• Encryption test. The byte code is “81”(hexadecimal). This instruction is to instruct
the board to encrypt with the key and plaintexts stored in the RAM of the board. After
receiving the corresponding message and replying, the board will then directly perform
the key expansion and the encryption (of AES-128 masked by code-based masking)
using the stored key value and plaintexts. After the encryption, the board will send a
fixed byte code “95”(hexadecimal) for the status reminder. Right after it will send 4
bytes to transfer the clock cycle results counted for such an encryption process. Note
that this is a Little Endian transmission for 32-bit data. Usually, this instruction is
used to count the clock cycles for an encryption process.

1 PC: 80 81 // instruct the board to encrypt with the stored key and

plaintexts

2 board: 81 // reply and start the encryption

3 board: 95 // remind that the encryption is completed

4 board: b6 5d 02 00 // the true clock cycle is 0x00025db6

To communicate with board by shell, two terminals may be required. one (T1) is for
transmitting data to the serial port, and the other one (T2) is for printing the data
from the board.

1 T2: $ hexdump -C -n 6 /dev/ttyUSB0

2 T1: $ echo -e -n "\x80\x81" > /dev/ttyUSB0

3 // "81 95 b6 5d 02 00" shall be printed on T2

• Return the ciphertexts. The byte code is “10”(hexadecimal). This instruction is
to instruct the board to transfer the ciphertexts (initialized to all 0) stored in RAM.

After receiving the corresponding message and replying, the board will then transfer
the ciphertexts (for 16 bytes in total) byte by byte. To remind that such transmission
is completed, the board will finally send a fixed code “94”(hexadecimal).

1 PC: 80 10 // instruct the board to transfer the 16 bytes cyphertexts

2 board: 10 // reply and start the encryption

3 // send the ciphertexts

4 board: 69 c4 e0 d8 6a 7b 04 30 d8 cd b7 80 70 b4 c5 5a

5 board: 94 // remind that the issue is over

To communicate with board by shell, two terminals may be required. one (T1) is for
transmitting data to the serial port, and the other one (T2) is for printing the data
from the board.

1 T2: $ hexdump -C -n 18 /dev/ttyUSB0

2 T1: $ echo -e -n "\x80\x10" > /dev/ttyUSB0

3 // "10 69 c4 e0 d8 6a 7b 04 30 d8 cd b7 80 70 b4 c5 5a 94" shall be

printed on T2

The above-mentioned “key”, “plaintexts” and “ciphertexts” are declared and initialized in
the source file “main.c” for all implementations. And they are defined as “key aes”, “pt aes”
and “ct aes”, respectively. The initial value of key is 0x000102030405060708090a0b0c0d0e0f
and the initial value of plaintexts is 0x00112233445566778899aabbccddeeff. Hence if the en-
cryption process is correct, the ciphertexts should be 0x69c4e0d86a7b0430d8cdb78070b4c55a.
Therefore, you can simply use the “encryption test” and “return the ciphertexts” instructions
to check the correctness of the encryption.

2.4 Clock Cycle Counting

It is recommended to directly use the instruction “Encryption test” to count the clock cycles
of once encryption process. It is worth noting that the clock cycles counted by the instruction
“Instruct to encrypt” and “Encryption test” sometimes are different. They are usually times
of 16 clock cycles apart. However, this difference is very small and originates from different
instructions. The records of clock cycles in the paper depend on the clock cycles counted by
“Encryption test”.

2.5 Acquisition

In this artifact, only the “general” implementation is designed for trace acquisition. However,
the other implementations can be exploited for acquisition if with some light modifications
(e.g., adding triggers). In our codes, the pin PA7 of the board is leveraged for trigger.

3 About Source Code

3.1 File Organization

For the five implementations in the artifact, there are some files with the same functions
that are listed below.

• “comm.h” & “comm.c”. These files declare and implement functions for serial
communication of the STM32F407VG board.

• “DWT clock.h” & “DWT clock.c”. These files declare and implement functions
for the clock cycle counter of the STM32F407VG board.

• “random.h” & “random.c”. These files declare and implement functions for acti-
vating TRNG (True Random Numbers Generator) of the STM32F407VG board.

• “common.h”. Some global variables are declared and macros are defined in this file.

• “aes.h” & “aes.c”. These files declare and implement functions for the key expansion
and the masked encryption of AES-128. Note that the specific implementations have
an extra assembly source file called “aes.s” that implements the whole masked AES-
128 algorithm (excluding the key expansion) in assembly code. While the “general”
implementation uses the assembly code to implement masked gadgets only.

• “main.c”. This file implements the communication (introduced above) with the
STM32F407VG board.

For each implementation, there exist some assembly source files to implement masked gadgets
(and masked AES-128 only for specific implementations) by code-based masking. For the
detailed functions, please see the annotations covered in the files. In addition, there are
some common system files and “Makefile” to compile the code for the five implementations.
For the “general” implementation, it also includes “trigger.h”, “trigger.c” and “trigger.s” for
activating trigger in STM32F407VG board.

3.2 Input Parameters

Concerning the specific implementations, since the generator matrix A is fixed, no inputs
are required and there is no need to tune any parameters. While regarding the “general”
implementation, the generator matrix A and the associated matrices should be required as
inputs and some parameters should accordingly be tuned. Those inputs and parameters are

all covered in the source file “aes.c” and detailed in the annotations. However, in the current
version of “general” implementation, the parameters are well-tuned for the input generator
matrix

A =

(
1 0
91 1

)
,

hence it can run normally with no modification if required.

3.3 About Random Numbers

With respect to specific implementations, all the random numbers for a whole masked
AES-128 algorithm should be generated first before the encryption. The generated ran-
dom numbers are stored in an array variable “randomSeed”, which is defined in the source
file “main.c”. The function “getRand()” for generating random numbers is implemented in
the source file “aes.c”.

Concerning the “general” implementation, random numbers will be generated when required
then during the encryption. And the functions involving generating random numbers include
“getRandom1()”, “getRandom2()” and “AES Encrypt GCB()”, which are all implemented
in the source file “aes.c”.

References

[BFG+17] Josep Balasch, Sebastian Faust, Benedikt Gierlichs, Clara Paglialonga, and
François-Xavier Standaert. Consolidating inner product masking. In Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, pages 724–754. Springer, 2017.

	About Artifacts
	Running the Codes
	Compiling
	Programming the Codes
	Communicating with the board
	Clock Cycle Counting
	Acquisition

	About Source Code
	File Organization
	Input Parameters
	About Random Numbers

