
CryptoLine

July 19, 2022

1 Introduction

CryptoLine is a tool and a language for the verification of low-level imple-
mentations of mathematical constructs. In CryptoLine, users can specify two
kinds of properties, namely algebraic properties and range properties. Algebraic
properties involve equalities and modular equalities in the integer domain while
range properties involve bit-accurate variable ranges. CryptoLine verifies al-
gebraic properties and range properties separately. Verification of algebraic
properties is reduced to ideal membership queries which are solved by external
computer algebra systems. Verification of range properties is reduced to Sat-
isfiability Modulo Theories (SMT) queries which are solved by external SMT
solvers.

2 CryptoLine Language

An identifier is a regular string started by a letter or an underscore, followed
by letters, digits, or underscores.

id ::= (letter | underscore)[letter | digit | underscore]

All constants and variables in CryptoLine are typed. Let w be a positive
integer. uintw and sintw in CryptoLine denote the types of bit-vectors with
width w in the unsigned and two’s complement signed representations respec-
tively. The type uint1 is also written as bit.

typ ::= uint1 | sint2 | uint2 | sint3 | · · · | uintw | sint(w + 1)

A constant is an integer, a binary number, a hexadecimal number, a named

1

constant, or arithmetic expressions over constants.

const ::= simple const
| (((complexy const)))

simple const ::= Z
| 0b[0− 1]+

| 0x[0− 9a− fA− F]+

| $$$id
complexy const ::= const

| −−− complexy const
| complexy const +++ complexy const
| complexy const −−− complexy const
| complexy const ∗∗∗ complexy const
| complexy const ∗∗∗∗∗∗ complexy const

typed const ::= const@typ
| typ const

The value of a named integer c is read by $c. CryptoLine supports the follow-
ing arithmetic operators over constants: unary minus (-), addition (+), subtrac-
tion (-), multiplication (*), and exponent (**). A typed constant is a constant
with its type explicitly specified.

A variable is an identity. A typed variable is a variable with its type explicitly
specified. An lval is either a variable or a typed variable.

var ::= id
typed var ::= var@typ | typ var

lval ::= var | typed var

The notation t∗◦ and t+◦ respectlvey represents a possibly empty and a non-empty
sequence of ◦-separated t.

An atom is either a typed constant, a variable, or a typed variable. It is not
necessary to specify the variable type explicitly in an atom because CryptoLine
can infer the type automatically.

atom ::= typed const | var | typed var

An algebraic expression is evaluated over Z.

eexp ::= simple const | var
| −−− eexp | eexp +++ eexp
| eexp −−− eexp | eexp ∗∗∗ eexp
| eexp ∗∗∗∗∗∗ eexp | limbslimbslimbs const [[[eexp+

,,,]]]
| (((eexp)))

limbs n [e1, . . . , em] represents e1 + e22n + e322n + · · · + em2(m−1)n. A range
expression is evaluated over bit vectors. const w n is a bit-vector of width w
and value n. ∼ (neg) is logical negation. ! (not), & (and), | (or), ˆ (xor) are
respectively bit-wise negation, bit-wise AND, bit-wise OR, and bit-wise XOR.

2

umod is unsigned remainder. srem is 2’s complement signed remainder (sign fol-
lows dividend). smod is 2’s complement signed remainder (sign follows divisor).
uext and sext are respectively unsigned and signed extension operations.

rexp ::= (((rexp))) | constconstconst const const
| −−− rexp | rexp +++ rexp
| rexp −−− rexp | rexp ∗∗∗ rexp
| ∼∼∼ rexp | negnegneg rexp
| !!! rexp | notnotnot rexp
| rexp &&& rexp | andandand rexp rexp
| rexp ||| rexp | ororor rexp rexp
| rexp ˆ̂̂ rexp | xorxorxor rexp rexp
| umodumodumod rexp rexp | sremsremsrem rexp rexp
| smodsmodsmod rexp rexp | limbslimbslimbs const [[[rexp+

,,,]]]
| uextuextuext rexp const | sextsextsext rexp const

A predicate is represented by an algebraic predicate and a range predicate.

pred ::= truetruetrue | epred &&&&&& rpred

An algebraic predicate is evaluated over the integer domain. e1 = e2 (eq e1 e2) is
an equality over algebraic expressions. e1 = e2 (mod [m1, . . . ,mn]) (eqmod e1 e2
[m1, . . . ,mn]) is a modular equality. p1 /\ p2 (and p1 p2) is a logical conjunction
of p1 and p2. The conjunction of a sequence of algebraic predicates e1, . . . , en is
written as /\ [e1, . . . , en] (and [e1, . . . , en]).

epred ::= (((epred))) | truetruetrue
| eexp === eexp | eqeqeq eexp eexp
| eexp === eexp (((modmodmod [eexp+

,,,]))) | eqmodeqmodeqmod eexp eexp [eexp+
,,,]

| epred /\/\/\ epred | andandand epred epred
| /\/\/\ [[[epred+

,,,]]] | andandand [[[epred+
,,,]]]

A range predicate specifies the ranges of variables. CryptoLine offers com-
parisons such as equality (=), modular equalities (equmod , eqsmod , eqsrem),
unsigned less than (<), unsigned less than or equal to (<=), unsigned greater
than (>), unsigned greater than or equal to (>=), signed less than (< s), signed
less than or equal to (<= s), signed greater than (> s), and signed greater than

3

or equal to (>= s).

rpred ::= (((rpred))) | truetruetrue
| rexp === rexp | eqeqeq rexp rexp
| rexp === rexp (((umod rexp))) | equmodequmodequmod rexp rexp rexp
| rexp === rexp (((smod rexp))) | eqsmodeqsmodeqsmod rexp rexp rexp
| rexp === rexp (((srem rexp))) | eqsremeqsremeqsrem rexp rexp rexp
| rexp <<< rexp | ultultult rexp rexp
| rexp <=<=<= rexp | uleuleule rexp rexp
| rexp >>> rexp | ugtugtugt rexp rexp
| rexp >=>=>= rexp | ugeugeuge rexp rexp
| rexp < s< s< s rexp | sltsltslt rexp rexp
| rexp <= s<= s<= s rexp | sleslesle rexp rexp
| rexp > s> s> s rexp | sgtsgtsgt rexp rexp
| rexp >= s>= s>= s rexp | sgesgesge rexp rexp
| ∼∼∼ rpred | negnegnegrpred
| rpred /\/\/\ rpred | andandand rpred rpred
| rpred \/\/\/ rpred | ororor rpred rpred
| /\/\/\ [[[rpred+

,,,]]] | andandand [[[rpred+
,,,]]]

| \/\/\/ [[[rpred+
,,,]]] | ororor [[[rpred+

,,,]]]

There are numerous instructions supported by CryptoLine. mov x a as-
signs destination variable x by the value of the source atom a. cmov x c a1 a2
assigns destination variable x by the value of the source atom a1 if the condi-
tion bit c is 1, and otherwise by the value of the source atom a2. add x a1 a2
assigns x by the addition of the source atoms a1 and a2. Note that add may
overflow. adds c x a1 a2 assigns x by the addition of the source atoms a1 and
a2 with carry bit c set. adc x a1 a2 y assigns x by the addition of the carry bit
y and the source atoms a1 and a2. adcs is the same as adc except the carry
bit is set. There are also instructions sub for subtraction; subc, sbc and sbcs for
subtraction with carry; subb, sbb, and sbbs for subtraction with borrow. mul
and muls are half multiplication operations. The differenace is that muls sets
the carry bit if the multiplication under- or over-flow. mull is full multiplication
with results split into high part and low part. mulj is also full multiplication
without splitting the results. nondet assigns a variable by a nondeterministic
value. set x assigns the bit variable x by 1 while clear x assigns the bit variable
x by 0. shlxan shifts the source atom a left by n and stores the results in x.
shlsoxan is the same as shlsxan except that the bits shifted out are stored in
o. shrxan shifts the source atom a right logically by n and stores the results in
x. shrsxoan is the same as shrxan except that the bits shifted out are stored
in o. sar and sars are the same as shr and shrs respectively except that the
right shift is arithmetic. cshlxhxla1a2n concatenates the source atoms a1 (high
bits) and a2 (low bits), shifts the concatenation left by n, stores the high bits of
the shifted concatenation in xh, and stores the low bits shifted right by n in xl.
cshrxhxla1a2n concatenates the source atoms a1 (high bits) and a2 (low bits),
shifts the concatenation right logically by n, stores the high bits of the shifted

4

concatenation in xh, and stores the low bits in xl. cshrxhxloa1a2n is the same
as cshrxhxla1a2n except that the bits shifted out are stored in o. splxhxlan
splits the source atom a at position n, stores the high bits in xh, and stores the
low bits in xl. split is the same as spl except that the high bits and the low bits
are extended to the size of a. While the low bits are always zero extended, the
high bits are sign extended if a is signed and otherwise zero extended. joinxa1a2
assigns x by the concatenation of the source atoms a1 (high bits) and a2 (low
bits). and , or , not , and xor are bit-wise operations. casttxa assigns x by
the source atom a casted to the type t. vpctxa is the same as casttxa except
that the integer interpretation of x must be the same as the integer interpre-
tation of a. assert tells CryptoLine to verify the specified predicate. assume
tells CryptoLine to assume the specified predicate. cut e && r is an alias of
one ecut e followed by a rcut r. For ecut , CryptoLine verifies the specified
algebraic predicate and starts afresh with the predicate assumed when verify-
ing algebraic properties. Similarly for rcut , CryptoLine verifies the specified
range predicate and starts afresh with the predicate assumed when verifying
range properties. ghost can introduce logical variables that must only be used
in specifications such as assert , assume, cut , ecut , rcut , and postconditions.
The predicate in a ghost instruction is always assumed. call p (a1, a2, . . . , an)
executes a defined procedure p with arguments a1, a2, . . . , an.

instr ::= movmovmov lval atom | cmovcmovcmov lval lval atom atom
| addaddadd lval atom atom | addsaddsadds lval lval atom atom
| adcadcadc lval atom atom var | adcsadcsadcs lval lval atom atom var
| subsubsub lval atom atom
| subcsubcsubc lval lval atom atom | subbsubbsubb lval lval atom atom
| sbcsbcsbc lval atom atom var | sbcssbcssbcs lval lval atom atom var
| sbbsbbsbb lval atom atom var | sbbssbbssbbs lval lval atom atom var
| mulmulmul lval atom atom | mulsmulsmuls lval lval atom atom
| mullmullmull lval lval atom atom | muljmuljmulj lval atom atom
| nondetnondetnondet lval
| setsetset lval | clearclearclear lval
| shlshlshl lval atom const | shlsshlsshls lval lval atom const
| shrshrshr lval atom const | shrsshrsshrs lval lval atom const
| sarsarsar lval atom const | sarssarssars lval lval atom const
| cshlcshlcshl lval lval atom atom const
| cshrcshrcshr lval lval atom atom const | cshrscshrscshrs lval lval lval atom atom const
| splsplspl lval lval atom const | splitsplitsplit lval lval atom const
| joinjoinjoin lval lval atom const
| andandand lval atom atom | ororor lval atom atom
| xorxorxor lval atomatom | notnotnot lval atom
| castcastcast typ lval atom | vpcvpcvpc typ lval atom
| assertassertassert pred | assumeassumeassume pred
| cutcutcut pred clause | ecutecutecut epred clause
| rcutrcutrcut rpred clause | ghostghostghost typed var+

,,, ::: pred
| callcallcall id (((atom∗

,,,))) | nopnopnop

5

Instructions add , adds, adc, adcs, sub, subc, subb, sbc, sbcs, sbb, sbbs, mul ,
muls, mull , mulj , split , and spl also have specific unsigned and signed versions
with prefix “u” or “s”. For example, uadd and sadd are respectively unsigned
and signed versions of add .

Sometimes a predicate has to be proved with facts that have been cut off.
CryptoLine offers the specification of hints required to prove a predicate.

pred clause ::= true | epred clause &&&&&& rpred clause
epred clause ::= epred | epred proveproveprove withwithwith [[[prove with+

,,,]]]

| epred clause+
,,,

rpred clause ::= rpred | rpred proveproveprove withwithwith [[[prove with+
,,,]]]

| rpred clause+
,,,

prove with ::= preconditionpreconditionprecondition | allallall cutscutscuts
| allallall assumesassumesassumes | allallall ghostsghostsghosts
| cutscutscuts [[[N+

,,,]]]

Note that the indices of ecut and rcut are numbered separately (starting from
0). When verifying algebraic properties, rcut instructions are ignored. When
verifying range properties, ecut instructions are ignored. For example, consider
the following program.

mov x 15@uint16;

ecut x = 15;

mov y 3@uint16;

cut y = 3 && and [x = 15@16, y = 3@16];

add z x y;

rcut z = 18@16;

If we want to prove e prove with [cuts[1]] && r prove with [cuts[1]], then y = 3
will be assumed when proving the algebraic property e while z = 18@16 will be
assumed when proving the range property r.

A procedure is a parameterized program together with its specification (pre-
condition and postcondition).

proc ::= procprocproc id (((formals))) = {{{ pre }}} prog {{{ post }}}

The formal parameters of a procedure may be separated by a semicolon into
inout and out variables.

formals ::= typed var∗
,,, | typed var∗

,,, ;;; typed var∗
,,,

Variables before the semicolon are inout variables while variables after the semi-
colon are out variables. Formal parameters without a semicolon are all inout
variables. The difference between inout and out variables is that when calling
a procedure, actual parameters of the inout formal variables must be defined
but this is not required for the actual parameters of the out formal variables.
However, this does not mean that an out variable can be read before initialized.

6

Every variable must be initialized before reading its value. A precondition is a
predicate.

pre ::= pred

A postcondition is a predicate clause.

post ::= pred clause

A statement is a declaration of a procedure or a named integer.

stmt ::= proc | constconstconst id === const

A program is a sequence of semicolon separated statements. The entry point
of the program is the main procedure. Other procedures called in main are
inlined.

prog ::= stmt+;;;

7

