CRYPTOLINE

July 19, 2022

1 Introduction

CRYPTOLINE is a tool and a language for the verification of low-level imple-
mentations of mathematical constructs. In CRYPTOLINE, users can specify two
kinds of properties, namely algebraic properties and range properties. Algebraic
properties involve equalities and modular equalities in the integer domain while
range properties involve bit-accurate variable ranges. CRYPTOLINE verifies al-
gebraic properties and range properties separately. Verification of algebraic
properties is reduced to ideal membership queries which are solved by external
computer algebra systems. Verification of range properties is reduced to Sat-
isfiability Modulo Theories (SMT) queries which are solved by external SMT
solvers.

2 CryptoLine Language

An identifier is a regular string started by a letter or an underscore, followed
by letters, digits, or underscores.

id ::= (letter | underscore)|letter | digit | underscore]

All constants and variables in CRYPTOLINE are typed. Let w be a positive
integer. uintw and sintw in CRYPTOLINE denote the types of bit-vectors with
width w in the unsigned and two’s complement signed representations respec-
tively. The type uintl is also written as bit.

typ = uintl |sint2 | uint2 | sint3 | --- | uintw | sint(w + 1)

A constant is an integer, a binary number, a hexadecimal number, a named

constant, or arithmetic expressions over constants.

const simple_const
(complexy_const)
stmple_const Z
0b[0 — 1]
0x[0 —9a — fA— F]*
$id
complexy_const const

— complexy_const

complexy_const + complexy_const
complexy_const — complexy_const
complexy_const * complexy_const
complexy_const *x complexy_const
constQtyp

typ const

typed _const

The value of a named integer ¢ is read by $¢. CRYPTOLINE supports the follow-
ing arithmetic operators over constants: unary minus (-), addition (+), subtrac-
tion (-), multiplication (*), and exponent (**). A typed constant is a constant
with its type explicitly specified.

A variable is an identity. A typed variable is a variable with its type explicitly
specified. An [val is either a variable or a typed variable.

var = id
typed_var = wvarQtyp | typ var
lval == war | typed_var

The notation ¢ and tJ” respectlvey represents a possibly empty and a non-empty
sequence of o-separated t.

An atom is either a typed constant, a variable, or a typed variable. It is not
necessary to specify the variable type explicitly in an atom because CRYPTOLINE
can infer the type automatically.

atom ::= typed_const | var | typed_var

An algebraic expression is evaluated over Z.

eerp = simple_const | war
| — eexp | eexp + eexp
| eexp — eexp | eexp * eexp
| eexp *x eexp | limbs const [eexp |
| (eeap)
limbs n [e1,...,en] Tepresents e; + 2™ + €322 + -+ 4 ¢, 20m" D" A range

expression is evaluated over bit vectors. const w n is a bit-vector of width w
and value n. ~ (neg) is logical negation. ! (not), & (and), | (or), ~ (xor) are
respectively bit-wise negation, bit-wise AND, bit-wise OR, and bit-wise XOR.

umod is unsigned remainder. srem is 2’s complement signed remainder (sign fol-
lows dividend). smod is 2’s complement signed remainder (sign follows divisor).
uezt and sext are respectively unsigned and signed extension operations.

umod rexp rexp
smod rexp rexp
uext rexp const

srem rexrp Texp
limbs const [rexp™ |
sext rexp const

rexp == (rezp) | const const const
| — rexp | rexp + rexp
| rexp — rexp | rexp x rexp
| ~ rexp | neg rexp
| ! rexp | mot rexp
| rexp & rexp | and rexp rexp
| rexp | rexp | or rexp rexp
| rexp * rexp | zor rexp rexp
| |
| |
| |

A predicate is represented by an algebraic predicate and a range predicate.

pred = true | epred && rpred
An algebraic predicate is evaluated over the integer domain. e; = es (eq e e3) is
an equality over algebraic expressions. e; = eg (mod [my, ..., my]) (egmod ey ey
[m1,...,my]) is a modular equality. p; /\ p2 (and p; p2) is a logical conjunction
of p; and py. The conjunction of a sequence of algebraic predicates ey, ..., e, is
written as /\ [e1,...,en] (and [e1,...,ex]).
epred (epred) true
eq eerp eexp

epred [\ epred and epred epred
/\ [epred™] and [epred” |

A range predicate specifies the ranges of variables. CRYPTOLINE offers com-
parisons such as equality (=), modular equalities (equmod, egsmod, egsrem),
unsigned less than (<), unsigned less than or equal to (<=), unsigned greater
than (>), unsigned greater than or equal to (>=), signed less than (< s), signed
less than or equal to (<= s), signed greater than (> s), and signed greater than

= |
| eexp = eexp |
| eezp = eexp (mod [eexpf]) | egmod eexp eexp [eexpf]
\ |
\ |

or equal to (>=s).

rpred = (rpred) true
rerp = Trexp eq rexp Terp
rexp = rexp (umod rezp) equmod rexp Texp TETp
rexp = rexp (smod rexp) eqsmod rexp rexp rerp
rexp = rexp (srem rexp) eqsrem rexp rexrp rexp

|
| |
| |
| |
| |
| rexp < rexp | ult rexp rexp
| rexp <= rexp | wule rexp rexp
| rexp > rexp | ugt rexp rexp
| rexp >= rexp | uge rexp rexp
| rexp < s rexp | slt rexp rexp
| rexp <= s rexp | sle rexp rexp
| rexp > s rexp \
| rexp >=s rexp |
| ~ rpred |
| rpred /\ rpred \
| rpred \/ rpred |
| A\ Lrpred?) |
|\ [rpred?] |

There are numerous instructions supported by CRYPTOLINE. mov x a as-
signs destination variable x by the value of the source atom a. cmov x ¢ a1 as
assigns destination variable x by the value of the source atom a; if the condi-
tion bit ¢ is 1, and otherwise by the value of the source atom as. add x a1 as
assigns x by the addition of the source atoms a; and as. Note that add may
overflow. adds ¢ x a1 as assigns x by the addition of the source atoms a; and
ag with carry bit ¢ set. adc x a1 as y assigns x by the addition of the carry bit
y and the source atoms a; and as. adcs is the same as adc except the carry
bit is set. There are also instructions sub for subtraction; subc, sbc and sbes for
subtraction with carry; subb, sbb, and sbbs for subtraction with borrow. mul
and muls are half multiplication operations. The differenace is that muls sets
the carry bit if the multiplication under- or over-flow. mull is full multiplication
with results split into high part and low part. mulj is also full multiplication
without splitting the results. nondet assigns a variable by a nondeterministic
value. set x assigns the bit variable x by 1 while clear x assigns the bit variable
x by 0. shlxan shifts the source atom a left by n and stores the results in z.
shlsoxan is the same as shlszan except that the bits shifted out are stored in
0. shrzxan shifts the source atom a right logically by n and stores the results in
x. shrsxoan is the same as shrxan except that the bits shifted out are stored
in 0. sar and sars are the same as shr and shrs respectively except that the
right shift is arithmetic. cshlxpxjaiasn concatenates the source atoms ay (high
bits) and ag (low bits), shifts the concatenation left by n, stores the high bits of
the shifted concatenation in xy, and stores the low bits shifted right by n in z;.
cshrzpxia;asn concatenates the source atoms aq (high bits) and as (low bits),
shifts the concatenation right logically by n, stores the high bits of the shifted

sgt rexp rexp
sge rexp rexp
negrpred

and rpred rpred
or rpred rpred
and [rpred]
or [rpred”]

concatenation in x, and stores the low bits in x;. cshraxpxz;0aiasn is the same
as cshrxpxjaiasn except that the bits shifted out are stored in o. splxpx;an
splits the source atom a at position n, stores the high bits in x;, and stores the
low bits in x;. split is the same as spl except that the high bits and the low bits
are extended to the size of a. While the low bits are always zero extended, the
high bits are sign extended if a is signed and otherwise zero extended. joinra;as
assigns x by the concatenation of the source atoms aq (high bits) and as (low
bits). and, or, not, and zor are bit-wise operations. casttra assigns x by
the source atom a casted to the type t. wvpctza is the same as casttra except
that the integer interpretation of x must be the same as the integer interpre-
tation of a. assert tells CRYPTOLINE to verify the specified predicate. assume
tells CRYPTOLINE to assume the specified predicate. cut e && r is an alias of
one ecut e followed by a rcut r. For ecut, CRYPTOLINE verifies the specified
algebraic predicate and starts afresh with the predicate assumed when verify-
ing algebraic properties. Similarly for rcut, CRYPTOLINE verifies the specified
range predicate and starts afresh with the predicate assumed when verifying
range properties. ghost can introduce logical variables that must only be used
in specifications such as assert, assume, cut, ecut, rcut, and postconditions.
The predicate in a ghost instruction is always assumed. call p (a1, az,...,a,)

executes a defined procedure p with arguments ay,as, ..., ay.

mstr =

mov lval atom

add lval atom atom

ade lval atom atom var
sub lval atom atom

sube lval lval atom atom
sbe lval atom atom var
sbb lval atom atom var
maul lval atom atom
maull lval lval atom atom
nondet lval

set lval

shl lval atom const

shr lval atom const

sar lval atom const

eshl lval lval atom atom const
eshr lval lval atom atom const
spl lval lval atom const
join lval lval atom const
and lval atom atom

zor lval atomatom

cast typ lval atom

assert pred

cut pred_clause

reut rpred_clause

call id (atom”)

cmov lval lval atom atom
adds lval lval atom atom
ades lval lval atom atom var

subb lval lval atom atom
sbes lval lval atom atom var
sbbs lval lval atom atom wvar
mauls lval lval atom atom
mulj lval atom atom

clear lval

shls lval lval atom const
shrs lval lval atom const
sars lval lval atom const

cshrs lval lval lval atom atom const

split lval lval atom const

or lval atom atom
not lval atom

vpc typ lval atom

assume pred

ecut epred_clause

ghost typed_var™

o pred
nop

Instructions add, adds, adc, adcs, sub, subc, subb, sbc, sbcs, sbb, sbbs, mul,
muls, mull, mulj, split, and spl also have specific unsigned and signed versions
with prefix “u” or “s”. For example, uadd and sadd are respectively unsigned
and signed versions of add.

Sometimes a predicate has to be proved with facts that have been cut off.

CRYPTOLINE offers the specification of hints required to prove a predicate.

pred_clause = true | epred_clause && rpred_clause

epred_clause = epred | epred prove with [pmve,withj']
| epred,clause’+

rpred_clause = rpred | rpred prove with [pmve,withj']
| rpred,clause:"

prove_with ::= precondition | all cuts

| all assumes | all ghosts
| cuts [NF]

Note that the indices of ecut and rcut are numbered separately (starting from
0). When verifying algebraic properties, rcut instructions are ignored. When
verifying range properties, ecut instructions are ignored. For example, consider
the following program.

mov X 15@uinti16;

ecut x = 15;

mov y 3@uinti16;

cut y = 3 && and [x = 15016, y = 3016];
add z x y;

rcut z = 18016;

If we want to prove e prove_with [cuts[l]] && r prove_with [cuts[1]], then y = 3
will be assumed when proving the algebraic property e while z = 18@16 will be
assumed when proving the range property 7.

A procedure is a parameterized program together with its specification (pre-
condition and postcondition).

proc ::= proc id (formals) ={ pre } prog { post }

The formal parameters of a procedure may be separated by a semicolon into
tnout and out variables.

formals ::= typed var” | typed var® ; typed var’

Variables before the semicolon are inout variables while variables after the semi-
colon are out variables. Formal parameters without a semicolon are all inout
variables. The difference between inout and out variables is that when calling
a procedure, actual parameters of the inout formal variables must be defined
but this is not required for the actual parameters of the out formal variables.
However, this does not mean that an out variable can be read before initialized.

Every variable must be initialized before reading its value. A precondition is a
predicate.
pre ::= pred

A postcondition is a predicate clause.
post ::= pred_clause
A statement is a declaration of a procedure or a named integer.
stmt = proc | constid = const

A program is a sequence of semicolon separated statements. The entry point
of the program is the main procedure. Other procedures called in main are
inlined.

prog ::= stmt;Ir

