
CryptoLine: A Tutorial

Jiaxiang Liu, Xiaomu Shi, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang

1. Introduction

CryptoLine is a verificaiton tool chain for cryptographic assembly programs. It contains the
CryptoLine model checker and tools for building models from executable binary codes. Crypto-
Line is designed for verifying algebraic properties in cryptographic programs. It has been used to
verify cryptographic assembly programs in OpenSSL and blst, PQClean, and pqm4.

In this tutorial, we explain notable features of CryptoLine through two running examples from
x86 64 implementations for NIST P-256 curve in OpenSSL. Specifically, NIST P-256 curve uses the
finite field Zp256 where p256 is

0xffffffff00000001 0000000000000000 00000000ffffffff ffffffffffffffff.

We will verify the addition (ecp nistz256 add) and Montegomery multiplication (ecp nistz256 mul montx)
over the field Zp256 from crypto/ec/asm in OpenSSL. All CryptoLine codes can be found in
examples/openss/ecp nistz256/x86 64 from the CryptoLine distribution.

2. CryptoLine Overview

To verify cryptographic programs with CryptoLine, a verifier has to construct program models
written in the CryptoLine language. Such program models could be written manually. Manual
construction nevertheless could be tedious or even deviant from real cryptographic programs. To
help verifiers, CryptoLine provides a Python script itrace.py to extract traces from running
cryptographic programs in gdb. Verifiers will obtain traces of cryptographic programs as executed on
hardware. Since traces are extracted from gdb, they are sequences of assembly instructions from the
underlying hardware architecture. To convert such traces to CryptoLine models, CryptoLine
provides another Python script to zdsl.py to help verifiers transliate assembly instructions to
CryptoLine commands. Through itrace.py and to zdsl.py, accurate CryptoLine models can
be constructed rather easily. They are indispensable in practice.

Based on the CryptoLine models generated by to zdsl.py, verifiers need to annotate models
with input assumptions (or pre-conditions) and output requirements (or post-conditions). Additional
annotations are aften required to guide CryptoLine verification engines as well. After necessary
annotations are added, the CryptoLine verification tool will prove if all post-conditions must hold
under pre-conditions automatically. If CryptoLine fails to prove post-conditions, hints can be
found in CryptoLine log files. Verifiers can decide whether more annotations are needed or bugs
are found from the hints.

The CryptoLine verification tool employs two engines for proving different properties about
CryptoLine models. The SMT-based engine calls an external SMT QFBV (Satisfiability Modulo
Quantifier-Free Bit-Vector Theory) solver to prove range properties. The CAS-based engine calls an
external CAS (Computer Algebra System) to prove algebraic properties. Generally, the SMT-based
engine is automatic but unsuitable for complex non-linear algebraic properties. The CAS-based

1

2 JIAXIANG LIU, XIAOMU SHI, MING-HSIEN TSAI, BOW-YAW WANG, AND BO-YIN YANG

engine on the other hand is much better for algebraic properties but requires more annotations.
Verifiers need to choose which engine to use by their discretion.

3. Installing CryptoLine

CryptoLine is an open-sourced project available at https://github.com/fmlab-iis/cryptoline.
To download its source code, type

$ git clone https://github.com/fmlab-iis/cryptoline.git

CryptoLine is written in OCaml and requires the OCaml package manager opam, external
SMT solvers, and CAS’s. Use the following commands to install the opam package manager, the
SMT solver boolector, and the CAS Singular in ubuntu:

$ sudo apt-get install opam boolector singular-ui

Additional OCaml libraries are needed to compile CryptoLine. To initialize opam and install
these libraries, use the following commands:

$ opam init --disable-sandboxing # initialize opam

$ eval $(opam env) # set up environment variables

$ opam install dune lwt_ppx zarith # install additional OCaml packages

Finally, go to the CryptoLine directory and compile it with the following commands:

$ cd cryptoline

$ dune build

The built CryptoLine binaries are in the build/ default directory. To make a symbolic link
for convenience and check if everything works fine, try

$ ln -s _build/default/cv.exe

$ cv.exe -v -isafety examples/openssl/ecp_nistz256/ecp_nistz256_mul_mont.cl

If you see messages similar to the folowing, you are all set!

Parsing Cryptoline file: [OK] 0.002074 seconds

Checking well-formedness: [OK] 0.000732 seconds

Transforming to SSA form: [OK] 0.000278 seconds

Normalizing specification: [OK] 0.000017 seconds

Rewriting assignments: [OK] 0.000229 seconds

Verifying program safety:

Cut 0

Round 1 (32 safety conditions, timeout = 300 seconds)

Safety condition #3 [OK]

Safety condition #4 [OK]

Safety condition #0 [OK]

...

Safety condition #28 [OK]

Safety condition #31 [OK]

Overall [OK] 5.185277 seconds

Verifying range specification: [OK] 2.155957 seconds

Rewriting value-preserved casting: [OK] 0.000023 seconds

Verifying algebraic specification: [OK] 0.107180 seconds

Verification result: [OK] 7.452392 seconds

4. Running Examples from OpenSSL

The CryptoLine verification tool is a model checker. That is, it checks specified properties
about models. To verify cryptographic programs with CryptoLine, we need to write a model for the
program and specify properties about the model. In this tutorial, we will verify the x86 64 assembly
subroutines ecp nistz256 add and ecp nistz256 mul montx from ecp nistz256-x86 64.pl in

CryptoLine: A TUTORIAL 3

crypto/ec/asm from OpenSSL. The subroutine ecp nistz256 add takes two inputs a and b from
the field Zp256, computes their sum c ≡ a + b mod p256, and stores c in memory. The API for
ecp nistz256 mul montx takes two inputs a, b from Zp256, computes their Montgomery product

c ≡ a × b × 2−256 mod p256, and stores c in memory. They are used by OpenSSL on x86 64 by
default. We will see important features of CryptoLine in these running examples.

4.1. ecp nistz256 add.
4.1.1. Model Construction. The easiest way to construct accurate CryptoLine models is by

extracting traces from execution. To do so, we need to build an executable binary for the crypto-
graphic program under verification. Let us write a simple C program which calls the two assembly
subroutines.

#include <stdint.h>

#define P256_LIMBS 4

typedef uint64_t BN_ULONG;

/* Modular add: res = a+b mod P */

void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],

const BN_ULONG a[P256_LIMBS],

const BN_ULONG b[P256_LIMBS]);

/* Montgomery mul: res = a*b*2^-256 mod P */

void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],

const BN_ULONG a[P256_LIMBS],

const BN_ULONG b[P256_LIMBS]);

int main (void) {

BN_ULONG a[P256_LIMBS], b[P256_LIMBS], r[P256_LIMBS];

/* Modular add: res = a+b mod P */

ecp_nistz256_add(r, a, b);

/* Montgomery mul: res = a*b*2^-256 mod P */

ecp_nistz256_mul_mont(r, a, b);

return 0;

}

An executable binary can be built with the following command (libcrypto.a is from OpenSSL):

$ gcc -o top top.c libcrypto.a

CryptoLine provides the Python script itrace.py to extract execution traces from gdb.
Write $(CL HOME)for the root directory of CryptoLine. The execution trace of ecp nistz256 add

is extracted with the following command:

$ $CL_HOME/scripts/itrace.py top ecp_nistz256_add ecp_nistz256_add.gas

The first argument is the name of the executable binary top, the second argument is the name of the
subroutine ecp nistz256 add, and the third argument is the name of the output file (ecp nistz256 add.gas).
The content of ecp nistz256 add.gas looks like

ecp_nistz256_add:

%rdi = 0x7fffffffda00

%rsi = 0x7fffffffd9c0

%rdx = 0x7fffffffd9e0

%rcx = 0x7fffffffd9c0

%r8 = 0x555555580c70

4 JIAXIANG LIU, XIAOMU SHI, MING-HSIEN TSAI, BOW-YAW WANG, AND BO-YIN YANG

%r9 = 0x7ffef3ff00000000

#! -> SP = 0x7fffffffd9b8

push %r12 #! EA = L0x7fffffffd9b0; ...

push %r13 #! EA = L0x7fffffffd9a8; ...

mov (%rsi),%r8 #! EA = L0x7fffffffd9c0; ...

xor %r13,%r13 #! PC = 0x55555557c327

mov 0x8(%rsi),%r9 #! EA = L0x7fffffffd9c8; ...

mov 0x10(%rsi),%r10 #! EA = L0x7fffffffd9d0; ...

mov 0x18(%rsi),%r11 #! EA = L0x7fffffffd9d8; ...

lea -0x33d(%rip),%rsi # 0x55555557c000 ...

add (%rdx),%r8 #! EA = L0x7fffffffd9e0; ...

adc 0x8(%rdx),%r9 #! EA = L0x7fffffffd9e8; ...

...

The script itrace.py shows the register contents when ecp nistz256 add is called. By calling con-
vention, %rdi, %rsi, and %rdx contains the values of the first three arguments to ecp nistz256 add.
In this case, we see the pointers r[], a[], and b[] are 0x7fffffffda00, 0x7fffffffd9c0, and
0x7fffffffd9e0 respectively. For each instruction, itrace.py moreover reports the effective ad-
dress of its argument (EA), the value stored in the address (Value), and the program counter (PC).
The itrace.py script is necessarily architecture-dependent. It currently supports ARM, MIPS,
RISC-V, and x86. It can also connect to remote gdb through a serial port. It has been used to
extract traces from ARM Cortex-M4 development boards.

Our next step is to convert x86 64 instructions to corresponding CryptoLine commands.
CryptoLine provides the Python script to zdsl.py to convert instructions by writing translation
rules. Translation rules are specified in the beginning of execution traces (ecp nistz256 add.gas).
They must start with #. For to zdsl.py, strings prefixed by %% are matched differently. We start
with rules for such strings:

#! $1c(%rdi) = %%EA

#! (%rdi) = %%EA

#! $1c(%rsi) = %%EA

#! (%rsi) = %%EA

#! $1c(%rdx) = %%EA

#! (%rdx) = %%EA

#! %r$1c = %%r$1c

#! %rax = %%rax

#! %rcx = %%rcx

#! %rdx = %%rdx

The left hand side denotes the string in the trace to be matched. The right hand side denotes how
to rewrite the match strings. The notations $1c, $2c, and so on match constants. The first six rules
rewrite memory references to %%EA. The last four rules add an additional % to registers.

For each x86 64 instruction in ecp nistz256 add.gas, a translation rule is needed for con-
vertion. Instructions starting with # will be skipped. Let us look at the rule for the x86 64 xor

instruction:

#! xor $1v, $1v -> mov $1v 0@uint64

The left hand side denotes the pattern in the trace to be matched. The right hand side denotes
how to rewrite the matched pattern. The strings prefixed with %% are matched by $1v, $2v, and so
on. The x86 64 instructions from the trace separate arguments by ,. They moreover write sources
before destinations. The CryptoLine commands however write destinations before sources. In
this rule, the same register appears in both arguments to the xor instruction. The register is set to
zero effectively. The rule thus sets the CryptoLine variable to 0@uint64. Note that all constants

CryptoLine: A TUTORIAL 5

in CryptoLine must be given a type. The notation 0@uint64 denotes the constant zero of the
unsigned 64-bit integer type.

Our next rules are for the x86 64 mov instruction:

#! mov $1v, $2v -> mov $2v $1v

#! mov $1ea, $2v -> mov $2v $1ea

#! mov $1v, $2ea -> mov $2ea $1v

The string %%EA is matched by $1ea, $2ea, and so on. Recall that itrace.py reports the effective
address appeared in each instruction. The script to zdsl.py will also rewrite each matched %%EA

to the corresponding effective address. In CryptoLine, there is no memory model. All memory
stores are modeled by CryptoLine variables. By convention, the memory store with the address
addr are modeled by the variable Laddr . Using effective addresses as variable names allows us to
avoid tedious address computation. It greatly simplifies our model construnction. Our rules simply
swap the order of source and destination.

The rules for arithmetic instructions are also strightforward:

#! add $1ea, $2v -> adds carry $2v $2v $1ea

#! adc $1ea, $2v -> adcs carry $2v $2v $1ea carry

#! adc \$0x0, $1v -> adc $1v $1v 0@uint64 carry

#! sub $1ea, $2v -> subb carry $2v $2v $1ea

#! sbb $1ea, $2v -> sbbs carry $2v $2v $1ea carry

#! sbb \$0x0, $1v -> sbbs carry $1v $1v 0@uint64 carry

In CryptoLine commands, all arguments are explicit. Consider, for instance, the x86 64 add

instruction. It puts the sum of the two arguments in the destination and sets the carry flag implicitly.
In CryptoLine, two commands are provided for addition: add updates the destination with the
sum of sources; adds updates the destination with the sume of sources and the destination flag with
carry. In our rules, the CryptoLine variable carry denotes the carry flag. We therefore use the
adds and adcs for the x86 64 add and adc instructions respectively. Finally, CryptoLine provides
subtraction commands for carry or borrow flags. The subb commands updates the destination
with the difference of sources and the destination flag with borrow ; the subc commands updates
the destination with the difference of sources and the destination flag with carry. In x86 64, the
sub instruction updates the carry flag with borrow. Our rule hence uses the CryptoLine subb

command.
Our last rule is for the x86 64 cmovb instruction:

#! cmovb $1v, $2v -> cmov $2v carry $1v $2v

The instruction sets the destination to the value of source if the carry flag is true. The CryptoLine
command cmov sets the destination to the value of the first source if the source flag is true; it sets
the destination to the value of the second source otherwise.

After putting all translation rules in the beginning of ecp nistz256 add.gas, the x86 64 trace
can be converted to a CryptoLine model with following command:

$ $CL_HOME/script/to_zdsl.py ecp_nistz256_add.gas > ecp_nistz256_add.cl

The content of ecp nistz256 add.cl looks like:

proc main (L0x55555557c000, ...) =

{

true

&&

true

}

(* #! -> SP = 0x7fffffffd9b8 *)

#! 0x7fffffffd9b8 = 0x7fffffffd9b8;

6 JIAXIANG LIU, XIAOMU SHI, MING-HSIEN TSAI, BOW-YAW WANG, AND BO-YIN YANG

(* #push %r12 #! ... *)

#push %%r12 #! ...

(* #push %r13 #! ... *)

#push %%r13 #! ...

(* mov (%rsi),%r8 #! EA = L0x7fffffffd9c0; ... *)

mov r8 L0x7fffffffd9c0;

(* xor %r13,%r13 #! PC = 0x55555557c327 *)

mov r13 0@uint64;

...

(* #repz retq #! PC = 0x55555557c39c *)

#repz retq #! ...

{

true

&&

true

}

The notation proc main (...) = denotes the main subroutine in CryptoLine. The arguments
to the main subroutine are the uninitialized variables reported by to zdsl.py. In this case, they
are memory stores for input arguments and constants used in ecp nistz256 add. The expression
in the brackets true && true denote the pre-condition. It is followed by CryptoLine commands
for x86 64 instructions. Each x86 64 instruction is put in CryptoLine comments prefixed by #

or enclosed by (* and *). It is then followed by the CryptoLine command generated with the
translation rules. Finally, the expression in the ending brackets true && true denotes the post-
condition.

Let us first make arguments more readable by replacing the main subroutine declaration with:

proc main (uint64 a0, uint64 a1, uint64 a2, uint64 a3,

uint64 b0, uint64 b1, uint64 b2, uint64 b3,

uint64 m0, uint64 m1, uint64 m2, uint64 m3) =

We will use a’s and b’s for the two input elements and m’s for the modulo p256. The pre-condition
for the main subroutine is

{

true

&&

and [m0 = 0xffffffffffffffff@64, m1 = 0x00000000ffffffff@64,

m2 = 0x0000000000000000@64, m3 = 0xffffffff00000001@64,

limbs 64 [a0, a1, a2, a3] <u limbs 64 [m0, m1, m2, m3],

limbs 64 [b0, b1, b2, b3] <u limbs 64 [m0, m1, m2, m3]

]

}

Recall that two different engines are employed in CryptoLine. In order to differentiate properties
passed to different engines, all CryptoLine properties are of the form P && Q : P is passed to
CAS’s and Q is to SMT solvers. For ecp nistz256 add, the SMT-based engine suffices because it
does not involve non-linear computation. Our pre-condition simply passes true to the CAS-based
engine. For the SMT-based engine, the pre-condition assumes m’s to be the modulo p256. The field
elements a’s and b’s moreover are less than p256 in the unsigned representation. The expression
limbs n [a0, a1, . . . , am] is short for

a0 × 20×n + a1 × 21×n + · · · + am × 2m×n.

CryptoLine: A TUTORIAL 7

Our next step is to put input field elements and constants to correspond memory stores. By
consulting ecp nistz256 add.gas, we add the following CryptoLine commands after the pre-
condition:

mov L0x7fffffffd9c0 a0; mov L0x7fffffffd9c8 a1;

mov L0x7fffffffd9d0 a2; mov L0x7fffffffd9d8 a3;

mov L0x7fffffffd9e0 b0; mov L0x7fffffffd9e8 b1;

mov L0x7fffffffd9f0 b2; mov L0x7fffffffd9f8 b3;

mov L0x55555557c000 0xffffffffffffffff@uint64;

mov L0x55555557c008 0x00000000ffffffff@uint64;

mov L0x55555557c010 0x0000000000000000@uint64;

mov L0x55555557c018 0xffffffff00000001@uint64;

At the end of ecp nistz256 add.cl, we copy the result from memory stores by the following
command:

mov c0 L0x7fffffffda00; mov c1 L0x7fffffffda08;

mov c2 L0x7fffffffda10; mov c3 L0x7fffffffda18;

Finally, we specify the post-condition for the SMT-based engine:

{

true &&

and [eqmod limbs 64 [c0, c1, c2, c3, 0@64]

limbs 64 [a0, a1, a2, a3, 0@64] +

limbs 64 [b0, b1, b2, b3, 0@64]

limbs 64 [m0, m1, m2, m3, 0@64],

limbs 64 [c0, c1, c2, c3] <u limbs 64 [m0, m1, m2, m3]]

}

The post-condition states that the output field element c’s is congruent to the sum of input field
elements modulo p256, and the output field element is less than the modulo in the unsigned repre-
sentation. Note that the congruence is computed with 5 × 64 = 320 bits instead of 256 bits.

4.1.2. Verification. We are ready to verify our CryptoLine model for ecp nistz256 add. Try

$ $CL_HOME/cv.exe -v -isafety ecp_nistz256_add.cl

The transcript is shown below:

Parsing Cryptoline file: [OK] 0.001247 seconds

Checking well-formedness: [OK] 0.000218 seconds

Transforming to SSA form: [OK] 0.000105 seconds

Normalizing specification: [OK] 0.000097 seconds

Rewriting assignments: [OK] 0.000122 seconds

Verifying program safety:

Cut 0

Round 1 (1 safety conditions, timeout = 300 seconds)

Safety condition #0 [OK]

Overall [OK] 0.044187 seconds

Verifying range specification: [OK] 2.203067 seconds

Rewriting value-preserved casting: [OK] 0.000023 seconds

Verifying algebraic specification: [OK] 0.000412 seconds

Verification result: [OK] 2.249944 seconds

Congratulations! You have verified the x86 64 ecp nistz256 add subroutine in OpenSSL suc-
cessfully. As we have seen, CryptoLine provides useful scripts for model construction. They are

8 JIAXIANG LIU, XIAOMU SHI, MING-HSIEN TSAI, BOW-YAW WANG, AND BO-YIN YANG

not perfect and still require human intervention. Some practices will help verifiers get familiar with
the verification flow.
Exercise: Construct a model for ecp nistz256 sub in ecp nistz256-x86 64.pl and verify it.

4.2. ecp nistz256 mul mont. Our next example is to verify the assembly subroutine ecp nistz256 mul mont

from OpenSSL.1 The assembly subroutine takes two field elements a and b in Zp256 as inputs, com-
putes their Montgomery product c, and store c in memory. Mathematically, the inputs and output
satisfy the following modular equation:

c ≡ a× b× 2−256 mod p256, equivalently, c× 2256 ≡ a× b mod p256

4.2.1. Model Construction. The executable binary top built in the first example also calls the
assembly subroutine. The trace for ecp nistz256 mul mont can be extracted by itrace.py with
the same binary:

$ $CL_HOME/scripts/itrace.py top ecp_nistz256_mul_mont ecp_nistz256_mul_mont.gas

The trace ecp nistz256 mul mont.gas looks like the following:

ecp_nistz256_mul_mont:

%rdi = 0x7fffffffd9f0

%rsi = 0x7fffffffd9b0

%rdx = 0x7fffffffd9d0

%rcx = 0x7fffffffd9b0

%r8 = 0x-9

%r9 = 0xfffffffe

#! -> SP = 0x7fffffffd9a8

mov $0x80100,%ecx #! PC = 0x55555557d1e0

and 0x5e35(%rip),%ecx # ...

push %rbp #! EA = L0x7fffffffd9a0; ...

push %rbx #! EA = L0x7fffffffd998; ...

...

By calling convention, we know the input field elements are stored at 0x7fffffffd9b0 and 0x7fffffffd9d0;
the output is stored at 0x7fffffffd9f0. The subroutine uses more registers. Unsurprisingly, we
need additional translation rules for memory addresses and registers.

#! $1c(%rdi) = %%EA

#! (%rdi) = %%EA

#! $1c(%rsi) = %%EA

#! (%rsi) = %%EA

#! $1c(%rdx) = %%EA

#! (%rdx) = %%EA

#! $1c(%rbx) = %%EA

#! (%rbx) = %%EA

#! -$1c(%rip) = %%EA

#! %r$1c = %%r$1c

#! %rax = %%rax

#! %rbx = %%rbx

#! %rcx = %%rcx

#! %rdx = %%rdx

#! %rbp = %%rbp

#! %eax = %%eax

Many translation rules for x86 64 instructions can be re-used. They are listed below:

1Depending on the x86 64 microarchitecture, the assembly subroutine ecp nistz256 mul mont has two implemen-

tations: ecp nistz256 mul montx and ecp nistz256 mul montq. We will verify ecp nistz256 mul montx here.

CryptoLine: A TUTORIAL 9

#! add $1v, $2v -> adds carry $2v $2v $1v

#! adc $1v, $2v -> adcs carry $2v $2v $1v carry

#! cmovb $1v, $2v -> cmov $2v carry $1v $2v

#! mov $1c, $2v -> mov $2v $1c@uint64

#! mov $1v, $2v -> mov $2v $1v

#! mov $1ea, $2v -> mov $2v $1ea

#! mov $1v, $2ea -> mov $2ea $1v

#! sbb $1v, $2v -> sbbs carry $2v $2v $1v carry

Three rules are modified slightly. They are:

#! xor $1v, $1v -> mov $1v 0@uint64;\nclear carry;\nclear overflow

#! adc $1c, $2v -> adc $2v $2v $1c@uint64 carry

#! sbb $1c, $2v -> sbbs carry $2v $2v $1c@uint64 carry

The x86 64 xor instruction actually clears carry and overflow flags. This is not modeled previously
but needed in ecp nistz256 mul mont, so the rule is modified accordingly. The string
n represents a line break. In ecp nistz256 mul mont, more constant literals are used. We therefore
use $1c to match constants in the rules for adc and sbb.

Two addtional addition instructions are used in ecp nistz256 mul mont. The adcx and adox in-
structions compute the sum with the carry and overflow flags as carry respectively. Their translation
rules are similar to those for adc:

#! adcx $1v, $2v -> adcs carry $2v $2v $1v carry

#! adox $1v, $2v -> adcs overflow $2v $2v $1v overflow

The x86 64 mulx computes the product of the rdx register and the source. The 128-bit product
is then stored in the destinations. The CryptoLine mull command computes the product of the
last two arguments, stores the more significant half in the first argument and the less significant half
in the second. We thus use the following rule for mulx:

#! mulx $1v, $2v, $3v -> mull $3v $2v rdx $1v

Finally, the x86 64 instruction shlx r s d and shrx r s d shifts the value of s to the left
and right respectively by the value in r . The shifted result is stored in d . In CryptoLine, the shl

d s c shifts the value of s by the constant c bits to the left. The split h l s c command
splits s by the constant c into two parts: the lowest c bits are stored in l and other bits are stored
in h . It is tempting to use the following rules:

#! shlx $1v, $2v, $3v -> shl $3v $2v $1v

#! shrx $1v, $2v, $3v -> split $3v dc $2v $1v

There is a problem in these rules. The shl and split commands only allow constant shifting and
splitting. We need to change the variable $1v to a constant. After examining ecp nistz256 mul mont,
we see the first argument of all shlx and shrx instructions is always %r14. Moreover, %r14 is set
to $0x20 and never changed. We can ask CryptoLine to check the value of $1v is always 32 and
then use 32 as the shifting and splitting constant. The CryptoLine assert P && Q command
checks both P and Q must be true. The verification fails if any of P or Q can be false. Consider the
following rules:

#! shlx $1v, $2v, $3v -> assert $1v=32 && true;\nshl $3v $2v 32

#! shrx $1v, $2v, $3v -> assert $1v=32 && true;\nsplit $3v dc $2v 32

The assert $1v=32 && true command ensures $1v must be 32 at this location. If so, we use the
constant 32 instead of the variable $1v. Note that we ask an external CAS to check if $1v is equal
32. If you would like to use the SMT-based engine, use assert true && $1v=32@64 instead.

The translation rule for shlx neverthelss would not work. Safety conditions would fail during ver-
ification if they were used. To explain what safety conditions are, recall that CryptoLine employs
two different engines. Every CryptoLine command therefore has two different interpretations: one
for the SMT-based, the other for the CAS-base engine. The shl d s c command is interpreted as

10 JIAXIANG LIU, XIAOMU SHI, MING-HSIEN TSAI, BOW-YAW WANG, AND BO-YIN YANG

the logical left shift in bit-vector theory in the SMT-based engine. It is interpreted by the equation
d = s × 2c in the CAS-based engine. Two different interpretations need to be related, otherwise
their results may differ unexpectedly. To relate both interpretations of shl, CryptoLine checks
safety conditions to see if information might be lost in the command. For shl, the safety condition
is that only zeros are shifted out. Thus both interpretations coincide. In ecp nistz256 mul mont,
this is not the case. We need to translate the x86 64 shlx instruction differently to avoid the safety
condition failure.

Let us go back to ecp nistz256 mul mont.gas. Consider the following rule for shlx:

#! shlx $1v, $2v, $3v -> assert $1v=32 && true;\nsplit ddc $3v $2v 32;\nshl $3v $3v 32

After check $1v is 32, it splits $2v into two. The high 32-bit value is stored in ddc. The low 32-bit
value in $2v is then shifted to the left by 32 bits.

To further improve our translation rules, let us see how shlx and shrx are used in ecp nistz256 mul mont.gas:

shlx %r14,%r8,%rbp #! PC = 0x55555557d72e

adc %rcx,%r11 #! PC = 0x55555557d733

shrx %r14,%r8,%rcx #! PC = 0x55555557d736

The shlx instruction puts the low 32-bit of r8 in rbp. Then shrx puts the high 32-bit of r8 in rcx.
In the CryptoLine fragment, the variable ddc is in fact equal to rcx. Let us change the rule for
shrx to check it. Consider the following rule:

#! shrx $1v, $2v, $3v -> assert $1v=32 && true;\nsplit $3v dc $2v 32;\nassert true

&& $3v=ddc;\nassume $3v=ddc && true

After obtaining $3v, the new rule asks the SMT-based engine to check if $3v is equal to ddc. The
equation is then passed to the CAS-based engine by the CryptoLine assume command. This is
a common technique to pass information between engines. We ask one engine to verify a property
with assert, and then pass the property to the other engine with assume.

We are ready to apply the translation rules. After commenting out irrelevant instructions in
trace, use the following command:

$ $CL_HOME/scripts/to_zdsl.py ecp_nistz256_mul_mont.gas > ecp_nistz256_mul_mont.cl

It remains to declare input parameters and specify properties about ecp nistz256 mul mont.
The declaration and pre-condition are similar to ecp nistz256 add:

proc main (uint64 a0, uint64 a1, uint64 a2, uint64 a3,

uint64 b0, uint64 b1, uint64 b2, uint64 b3,

uint64 m0, uint64 m1, uint64 m2, uint64 m3) =

{

and [m0 = 0xffffffffffffffff, m1 = 0x00000000ffffffff,

m2 = 0x0000000000000000, m3 = 0xffffffff00000001]

&&

and [m0 = 0xffffffffffffffff@64, m1 = 0x00000000ffffffff@64,

m2 = 0x0000000000000000@64, m3 = 0xffffffff00000001@64,

limbs 64 [a0, a1, a2, a3] <u limbs 64 [m0, m1, m2, m3],

limbs 64 [b0, b1, b2, b3] <u limbs 64 [m0, m1, m2, m3]

]

}

Note that the modulo m’s appear in both parts of pre-condition. Since we will use the CAS-based
engine, we need to tell the engine about m’s. Simiarly, we initialize memory stores with input
parameters and constants.

mov L0x7fffffffd9b0 a0; mov L0x7fffffffd9b8 a1;

mov L0x7fffffffd9c0 a2; mov L0x7fffffffd9c8 a3;

mov L0x7fffffffd9d0 b0; mov L0x7fffffffd9d8 b1;

CryptoLine: A TUTORIAL 11

mov L0x7fffffffd9e0 b2; mov L0x7fffffffd9e8 b3;

mov L0x55555557c000 0xffffffffffffffff@uint64;

mov L0x55555557c008 0x00000000ffffffff@uint64;

mov L0x55555557c010 0x0000000000000000@uint64;

mov L0x55555557c018 0xffffffff00000001@uint64;

At the end of ecp nistz256 mul mont.cl, the results c’s are obtained from memory stores.

mov c0 L0x7fffffffd9f0; mov c1 L0x7fffffffd9f8;

mov c2 L0x7fffffffda00; mov c3 L0x7fffffffda08;

And we use the following post-condition:

{

eqmod limbs 64 [0, 0, 0, 0, c0, c1, c2, c3]

limbs 64 [a0, a1, a2, a3] * limbs 64 [b0, b1, b2, b3]

limbs 64 [m0, m1, m2, m3]

&&

limbs 64 [c0, c1, c2, c3] <u limbs 64 [m0, m1, m2, m3]

}

In the post-condition, we ask the CAS-based engine to verify c × 2256 ≡ a × b mod p256. For the
range check c < p256, we employs the SMT-based engine.

4.2.2. Verification. We are ready to verify our model. Type

$ $CL_HOME/cv.exe -v -isafety ecp_nistz256_mul_mont.cl

CryptoLine reports the algebraic specification fails. We will add more annotations to our
model. We have seen how information can be passed between engines in the translation rules for
shlx and shrx. Another useful information to pass from the SMT-based to the CAS-based engines
is addition carries. When carries propogate along long additions, the last carry is almost always
zero. Such information is easily inferred with the SMT-based engine. In ecp nistz256 mul mont,
two threads of long additions are computed interleavingly. One uses the x86 64 adcx instruction
and the other uses adox. There are three pairs of interleaving long additions. At the end of each
pair, we annotate ecp nistz256 mul mont.cl with the following commands:

(* NOTE: can’t carry *)

assert true && and [carry=0@1,overflow=0@1];

assume and [carry=0,overflow=0] && true;

Here, we ask the SMT-based engine to verify both carry and overflow are zeros, and then pass the
information to the CAS-baesd engine.

The last annotation we need to add is for the conditional moves at the end of ecp nistz256 mul mont.
Similar to ecp nistz256 add, the conditional moves check if the Montgomery product is less than
p256 by subtraction. If not, the difference is returned. The SMT-based engine suffices to verify this
in ecp nistz256 add. We will verify the conditional moves in the SMT-based engine and pass the
information to the CAS-based engine. Let us save the Montgomery product before subtraction with
the following:

ghost r12o@uint64, r13o@uint64, r8o@uint64, r9o@uint64, r10o@uint64 :

and [r12o=r12, r13o=r13, r8o=r8, r9o=r9, r10o=r10]

&& and [r12o=r12, r13o=r13, r8o=r8, r9o=r9, r10o=r10];

The keyword ghost declares five reference variables r12o, r13o, r8o, r9o, and r10o. These reference
variables can only appear in assert and assume commands and hence cannot the computation of
ecp nistz256 mul mont. After the conditional moves, we add two CryptoLine commands:

(* NOTE: final reduction *)

assert true &&

eqmod limbs 64 [r12, r13, r8, r9, 0@64]

12 JIAXIANG LIU, XIAOMU SHI, MING-HSIEN TSAI, BOW-YAW WANG, AND BO-YIN YANG

proc main (...) =

{ P0 && Q0 }

(* Phase I *)

cut P1 && Q1;

(* Phase II *)

cut P2 && Q2:

(* Phase III *)

{ P3 && Q3 }

(a) Original

proc main0 (...) =

{ P0 && Q0 }

(* Phase I *)

{ P1 && Q1 }

(b) Part I

proc main1 (...) =

{ P1 && Q1 }

(* Phase II *)

{ P2 && Q2 }

(c) Part II

proc main2 (...) =

{ P2 && Q2 }

(* Phase III *)

{ P3 && Q3 }

(d) Part III

Figure 1. The CryptoLine cut Command

limbs 64 [r12o, r13o, r8o, r9o, r10o]

limbs 64 [m0, m1, m2, m3, 0@64];

assume eqmod limbs 64 [r12, r13, r8, r9, 0]

limbs 64 [r12o, r13o, r8o, r9o, r10o]

limbs 64 [m0, m1, m2, m3, 0] && true;

The assert command asks the SMT-based engine to verify the result is congruent to the Montgomery
product modulo p256. The information is then passed to the CAS-based engine in assume.

Using the following command, CryptoLine reports ecp nistz256 mul mont is verified:

$ $CL_HOME/cv.exe -v -isafety ecp_nistz256_mul_mont.cl

Exercise: Construct a model for ecp nistz256 sqr mont in ecp nistz256-x86 64.pl and verify
it.

4.3. Compositional Reasoning with cut. The ecp nistz256 mul mont subroutine com-
putes in two phases. The first phase computes the Montgomery product and stores it in five registers
r12, r13, r8, r9, and r10. The second phase reduces the Montgomery product by modulo p256
and stores the final result in four registers r12, r13, r8, and r9. Since the two phases appear to be
independent, they may be verified independently.

The CryptoLine cut P && Q command provides a simple mechanism to divide a verification
task by parts. Consider the CryptoLine model in Figure 1a. The cut command effectively splits
the model into three parts shown in Figure 1b to 1c. Observe that P1 && Q1 is the post-condition in
Figure 1b but the pre-condition in Figure 1c. Similarly, P2 && Q2 is the post-condition in Figure 1c
but the pre-condition in Figure 1d. CryptoLine reports successful verification when all three parts
are verified successfully. Informally, P1 && Q1 is established and then assumed to verify P2 && Q2.
P2 && Q2 is then assumed to prove P3 && Q3. If we know how to divide a large cryptographic
prgram into phases, the cut command allows us to verify the program by parts.

Back to ecp nistz256 mul mont, it is natural to divide the subroutine by its two phases. Let
us add the following command just before the ghost declaration:

cut eqmod limbs 64 [0, 0, 0, 0, r12, r13, r8, r9, r10]

(limbs 64 [a0, a1, a2, a3] * limbs 64 [b0, b1, b2, b3])

limbs 64 [m0, m1, m2, m3] &&

and [limbs 64 [r12, r13, r8, r9, r10] <u

2@320 * limbs 64 [m0, m1, m2, m3, 0@64],

m0 = 0xffffffffffffffff@64, m1 = 0x00000000ffffffff@64,

m2 = 0x0000000000000000@64, m3 = 0xffffffff00000001@64,

r14=0x00000000ffffffff@64, r15=0xffffffff00000001@64,

r12=rbx, r13=rdx];

CryptoLine: A TUTORIAL 13

The cut command states the Montgomery product is stored in the five registers r12, r13, r8, r9,
and r10 and the product is less than twice of the modulo. The remaining equations collect necessary
assumptions to verify the reduction modulo p256.

With the simple modification, we can verify ecp nistz256 mul mont.cl again:

$ $CL_HOME/cv.exe -v -isafety ecp_nistz256_mul_mont.cl

On Raspberry Pi 4 (1.8GHz ARM Cortex-A72 with 8GB RAM), the model without cut is verified
in 153 seconds. In contrast, the model with cut is verified in 52 seconds. The cut command can
significantly reduce the verification time if used propertly.
Exercise: Add cut to your model for ecp nistz256 sqr mont and compare verification time.

