
XCrypto: A General Purpose Cryptographic ISE for RISC-V
Ben Marshall, Daniel Page, Thinh Pham

first.last@bristol.ac.uk
github.com/scarv/xcrypto

Introduction

Cryptographic workloads are expected to satisfy a range of
traditional design metrics, including high-throughput, low-latency,
low-footprint, power-efficiency, and high-assurance, all while executing
in a potentially adversarial environment. A large design space of
options must be considered when building a concrete implementation:
these options range between dedicated hardware and those entirely
based on software. ISEs represent a hybrid option: they alter a
general-purpose processor core with special-purpose hardware and
associated instructions; aiming to improve a software-based design
metric like latency.

As an ISE, XCrypto is a solution (vs. the solution) within the wider
design space of options; it offers as an alternative to the proposal by
the RISC-V cryptography extensions group, which extends the RISC-V
vector ISE. The idea is to leverage extensive existing literature and
hence experience wrt. cryptographic ISEs (see, e.g., published work at
the CHES conference), translating and applying it to RISC-V. Although
potentially less performant than alternatives, we expect
implementations using XCrypto to be more lightweight and flexible; as
a result, we view it as representing an attractive solution in the context
of micro-controller class cores.

Implementation Progress

Tool support:
I Modified toolchain to support instruction assembly.

I XCrypto support added to the Spike ISA Simulator.

Benchmarks (so far):
I Block Ciphers: AES, Prince, ChaCha20

I Hash Functions: SHA2, KeccakP400, KeccakP1600

I Multi-precision arithmetic & modular exponentiation.

Formally verified reference hardware implementation:
I Implemented as a re-usable co-processor on a Xilinx FPGA.

I Example area-optimised integration with the PicoRV32 core.

I CPU + XCrypto: 6.4K LUTs, 1.1K DFFs for RV32IMCX

I XCrypto Only: 1.9K LUTs, 215 DFFs.

Early Results

ISE Specification

Extra State: XCrypto adds a 16*32-bit register file for handling
cryptographic data. This enables minimally invasive implementations of
the ISE and flexibility wrt. side channel countermeasures.
ISE Organisation: Like RISC-V, XCrypto contains a base set of
instructions and multiple optional extensions. Implementations can
include only the functionality they need.
Class 1: Base Instructions: The bare minimum of instructions
needed to move data in/out of the register file. Load/Store
instructions allow partial register accesses.
xc.ld.hu c0,(0), 0(a0)
xc.ld.hu c0,(1), 6(a0)
.
.

lhu a2, 6(a0)
lhu a1, 0(a0)
slli a2, a2, 16
or a1, a1, a2

Class 2.1: Random number source: High quality randomness is
essential for cryptography and side-channel countermeasures. XCrypto
defines an interface to a randomness source, which can be seeded,
sampled and checked for quality.
Class 2.2: Scatter/Gather: Efficient SBOXs are crucial for block
ciphers. Byte and halfword scatter/gather instructions are a
code-dense and energy efficient way to achieve this.
.L0: xc.ld.w c0,0(a0)

xc.gather.h c0,c0,a1
xc.st.w c0,0(a0)
addi a0, a0, 4
bltu a0, a3, .L0

.

.L0: lhu t0, 0(a0)
add t1, t0, a1
lhu t0, 0(t1)
sh t0, 0(a0)
addi a0, a0, 2
bltu a0, a3, .L0

Class 2.3: Bitwise Operations: Bitwise manipulation of data is
essential to Cryptography. We include bitfield insert/extract
instructions, and multi-operand bitwise operation instructions. The
xc.bop instruction can implement any 3-variable bitwise function.

xc.bop c0, c1, c2, 0b11101000 ; c0 = c0 | (c1 & c2)

Class 2.4: Packed Arithmetic: Cryptographic implementations
often exhibit sub-word sized data parallelism. We add SWAR
functionality to the traditional set of arithmetic instructions; operating
on bit widths of: 2, 4, 8, 16 and 32.

xc.padd b, c2, c0, c1 ; c2 = sum of corresponding bytes in c0, c1
xc.padd w, c3, c0, c1 ; c3 = sum of words c0, c1

Class 2.5: Multi-precision arithmetic: Public key cryptography
depends on efficient multi-word arithmetic and efficient carry bit
handling.
xc.ldr.w c2, t0, a0
xc.ldr.w c3, t0, a1
xc.madd.3 (c1,c0), c2, c3, c1
xc.str.w c0, t0, a2
.
.
.

lw a5, 0(a1)
add a4, a5, a4
sltu a6, a4, a5
lw a5, 0(a3)
add a5, a4, a5
sltu a4, a5, a4
sw a5, 0(a0)

Class 3.1: AES: Given the importance of AES, we added dedicated
light-weight instructions to accelerate the SubBytes and MixColumns
operations.
Class 3.2 SHA3: Code-dense implementations of SHA3 suffer when
generating indexes into the state matrix. We accelerate this with
dedicated instructions for index generation, usable across all SHA3
parameter sets.

This work has been supported in part by

EPSRC via grant EP/R012288/1, under the

RISE (http://www.ukrise.org)

programme.

github.com/scarv/xcrypto
http://www.ukrise.org

