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Introduction

Cryptographic workloads are expected to satisfy a range of
traditional design metrics, including high-throughput, low-latency,
low-footprint, power-efficiency, and high-assurance, all while executing
in a potentially adversarial environment. A large design space of
options must be considered when building a concrete implementation:
these options range between dedicated hardware and those entirely
based on software. ISEs represent a hybrid option: they alter a
general-purpose processor core with special-purpose hardware and
associated instructions; aiming to improve a software-based design
metric like latency.

As an ISE, XCrypto is a solution (vs. the solution) within the wider
design space of options; it offers as an alternative to the proposal by
the RISC-V cryptography extensions group, which extends the RISC-V
vector ISE. The idea is to leverage extensive existing literature and
hence experience wrt. cryptographic ISEs (see, e.g., published work at
the CHES conference), translating and applying it to RISC-V. Although
potentially less performant than alternatives, we expect
implementations using XCrypto to be more lightweight and flexible; as
a result, we view it as representing an attractive solution in the context
of micro-controller class cores.

Implementation Progress

Tool support:
I Modified toolchain to support instruction assembly.

I XCrypto support added to the Spike ISA Simulator.

Benchmarks (so far):
I Block Ciphers: AES, Prince, ChaCha20

I Hash Functions: SHA2, KeccakP400, KeccakP1600

I Multi-precision arithmetic & modular exponentiation.

Formally verified reference hardware implementation:
I Implemented as a re-usable co-processor on a Xilinx FPGA.

I Example area-optimised integration with the PicoRV32 core.

I CPU + XCrypto: 6.4K LUTs, 1.1K DFFs for RV32IMCX

I XCrypto Only: 1.9K LUTs, 215 DFFs.

Early Results

ISE Specification

Extra State: XCrypto adds a 16*32-bit register file for handling
cryptographic data. This enables minimally invasive implementations of
the ISE and flexibility wrt. side channel countermeasures.
ISE Organisation: Like RISC-V, XCrypto contains a base set of
instructions and multiple optional extensions. Implementations can
include only the functionality they need.
Class 1: Base Instructions: The bare minimum of instructions
needed to move data in/out of the register file. Load/Store
instructions allow partial register accesses.
xc.ld.hu c0,(0), 0(a0)
xc.ld.hu c0,(1), 6(a0)
.
.

lhu a2, 6(a0)
lhu a1, 0(a0)
slli a2, a2, 16
or a1, a1, a2

Class 2.1: Random number source: High quality randomness is
essential for cryptography and side-channel countermeasures. XCrypto
defines an interface to a randomness source, which can be seeded,
sampled and checked for quality.
Class 2.2: Scatter/Gather: Efficient SBOXs are crucial for block
ciphers. Byte and halfword scatter/gather instructions are a
code-dense and energy efficient way to achieve this.
.L0: xc.ld.w c0,0(a0)

xc.gather.h c0,c0,a1
xc.st.w c0,0(a0)
addi a0, a0, 4
bltu a0, a3, .L0

.

.L0: lhu t0, 0(a0)
add t1, t0, a1
lhu t0, 0(t1)
sh t0, 0(a0)
addi a0, a0, 2
bltu a0, a3, .L0

Class 2.3: Bitwise Operations: Bitwise manipulation of data is
essential to Cryptography. We include bitfield insert/extract
instructions, and multi-operand bitwise operation instructions. The
xc.bop instruction can implement any 3-variable bitwise function.

xc.bop c0, c1, c2, 0b11101000 ; c0 = c0 | (c1 & c2)

Class 2.4: Packed Arithmetic: Cryptographic implementations
often exhibit sub-word sized data parallelism. We add SWAR
functionality to the traditional set of arithmetic instructions; operating
on bit widths of: 2, 4, 8, 16 and 32.

xc.padd b, c2, c0, c1 ; c2 = sum of corresponding bytes in c0, c1
xc.padd w, c3, c0, c1 ; c3 = sum of words c0, c1

Class 2.5: Multi-precision arithmetic: Public key cryptography
depends on efficient multi-word arithmetic and efficient carry bit
handling.
xc.ldr.w c2, t0, a0
xc.ldr.w c3, t0, a1
xc.madd.3 (c1,c0), c2, c3, c1
xc.str.w c0, t0, a2
.
.
.

lw a5, 0(a1)
add a4, a5, a4
sltu a6, a4, a5
lw a5, 0(a3)
add a5, a4, a5
sltu a4, a5, a4
sw a5, 0(a0)

Class 3.1: AES: Given the importance of AES, we added dedicated
light-weight instructions to accelerate the SubBytes and MixColumns
operations.
Class 3.2 SHA3: Code-dense implementations of SHA3 suffer when
generating indexes into the state matrix. We accelerate this with
dedicated instructions for index generation, usable across all SHA3
parameter sets.
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