
General Practical Cryptanalysis of the Sum of
Round-Reduced Block Ciphers and ZIP-AES

Antonio Flórez-Gutiérrez1[0000−0001−7749−8925],
Lorenzo Grassi2[0000−0003−1140−0520], Gregor Leander2[0000−0002−2579−8587],

Ferdinand Sibleyras1, and Yosuke Todo1[0000−0002−6839−4777]

1 NTT Social Informatics Laboratories, Tokyo, Japan
{antonio.florez,yosuke.todo}@ntt.com

2 Ruhr University Bochum, Bochum, Germany
{lorenzo.grassi,gregor.leander}@rub.de

Abstract. We introduce a new approach between classical security proofs
of modes of operation and dedicated security analysis for known crypt-
analysis families: General Practical Cryptanalysis. This allows us to ana-
lyze generically the security of the sum of two keyed permutations against
known attacks. In many cases (of course, not all), we show that the se-
curity of the sum is strongly linked to that of the composition of the two
permutations. This enables the construction of beyond-birthday bound
secure low-latency PRFs by cutting a known-to-be-secure block cipher
into two equal parts. As a side result, our general analysis shows an in-
evitable difficulty for the key recovery based on differential-type attacks
against the sum, which leads to a correction of previously published at-
tacks on the dedicated design Orthros.

1 Introduction

Symmetric primitives are used to encrypt most of our sensitive data in virtually
all applications. Block ciphers are arguably the most studied primitives.

Overhead of Modes. In order to encrypt actual data, primitives have to be used in
a mode-of-operation. As a consequence of block ciphers being the most studied
primitives, the majority of symmetric-key cryptographic schemes are built as
block cipher modes. The advantage of using primitives in a mode-of-operation
instead of directly designing an (authenticated) encryption is obvious: a well-
designed mode comes with a proof that reduces its security to the security of
the primitive. Using such a mode with a well-understood (block) cipher results
in a secure scheme. One example is the counter-mode, where a pseudo-random
function (PRF) is constructed by encrypting a counter. Indeed, AES-CRT is a
frequently used scheme for encryption. In this paper, we instead focus on the
sum of two block ciphers. Given two pseudo-random permutations (PRPs) (or
independent block ciphers) Ek and E′

k, the sum Ek(x)⊕E′
k(x) is a secure PRF.

However, modes have a significant overhead. For example, AES-CRT is only
secure only up to the birthday bound. For better security, modes with two (or

2 A. Flórez-Gutiérrez et al.

more) calls to the block cipher are required. Turning our focus to the sum-of-
PRP construction, we wonder whether it is necessary that both parts are secure
PRPs. This question was already posed by the dedicated PRF Orthros [4], which
consists of the sum of two specific keyed permutations that would not be secure
block ciphers individually. A similar approach was taken in [48], where AES-PRF
is proposed as a round-reduced instance of the EDMD construction presented
in [47]. The security of AES-PRF required dedicated cryptanalysis to explain
why known attacks do not apply. Interestingly, the authors of [48] state that the
sum construction seems more risky than the EDMD construction, an opinion we
clearly object to as explained below. The main difference with AES-PRF and
Orthros is that we are interested in a more general approach.

Link to Composition. As an example, consider a differential attack on the sum
construction. One would typically consider an input difference α that would be
input to both parts and try to find the most probable output differences β and
γ for the individual parts, leading finally to an output difference of β ⊕ γ.

P

C

E1 E2k1 k2

⊕

α

α α

β γ

β ⊕ γ

The starting point for our work is the observation that the probability for this
event, assuming the independence of the parts, is the same as the probability of
the following differential trail on the composition of E−1

1 and E2.

A BE−1
1 E2

β α γ

That is, at least intuitively, the sum construction is as secure as the composition
with respect to differential distinguishers. Ideally, we might hope for a result
stating that if E2 ◦E−1

1 is a secure (strong) PRP, then E1⊕E2 is a secure PRF.
Before discussing why this is not actually true, let us elaborate on how useful
such a statement would be. Such a statement would allow us to take any secure
block cipher, split it into two parts, and obtain a secure PRF . This would (i)
remove the overhead of having two calls to a secure cipher (ii) remove the need
for dedicated cryptanalysis as done in Orthros and (iii) result in a PRF with
roughly half the latency of the corresponding block cipher.

The problem is, as mentioned, the result is wrong. The easiest example is to
take E−1

1 to be identity. Then, the resulting scheme is the classical feed-forward

General Practical Cryptanalysis 3

construction for which distinguishing attacks exist with square-root complexity.
So the main question was if and how this statement might be corrected without
losing the great advantages it would provide.

Latency. Latency is an especially important fundamental criterion for the de-
sign of symmetric primitives. Indeed, compared to other performance criteria,
low latency is much harder to achieve. In a nutshell, asking for a minimal latency
cipher is asking about the minimal amount of computation necessary to obtain
a secure cipher - a question as fundamental as it is open. Besides being a funda-
mental property, low latency ciphers have important applications, with memory
encryption being one of the most prominent. There are a few dedicated low-
latency designs, e.g. PRINCE [16], PRINCEv2 [17], MANTIS [7], QARMA [2],
QARMAv2 [3], and SPEEDY [43]. While all these designs use different ideas,
their latency seems to converge. Differences in latency are mainly due to differ-
ent security margins. Substantially improving latency with another block cipher
design seems hard if not impossible, which means the possibility of essentially
halving the latency with the sum of permutations construction is very enticing.

Our Contribution. It turns out it is possible to show that a practically iden-
tical statement holds to an extent. For this, we introduce a new approach which
lies between general security reduction on modes of operation and dedicated
security analysis of a specific primitive. Specifically, we compare, without ana-
lyzing the inside of each component, the security of the sum of two components
with their composition. We name this approach General Practical Cryptanalysis.

We show that for many attack families, distinguishers on the sum construc-
tion are related to distinguishers on the composition. In the case of the two main
attack families, differential and linear distinguishers, as well as their variants,
their behaviors are very similar. In particular, (i) differential and linear trails
have the same probability/correlation in E1⊕E2 as in E2 ◦E−1

1 or E−1
2 ◦E1 and

(ii) differential-linear and boomerang distinguishers on E2 ◦ E−1
1 are equivalent

to differential-and-linear and second order differential distinguishers on E1⊕E2.
Of course, there are exceptions; for example, the sum construction is only as
strong as the strongest part against the integral attack.

An attack on a symmetric primitive is, in most cases, built from a distin-
guisher and a key-recovery part. Equally interesting as the results on distin-
guishers is, therefore, to understand how one can add key-recovery rounds to
the different distinguishers on the sum construction. Returning to the example
of differential cryptanalysis, it is intuitively clear that adding key recovery at
the end is unpromising. Adding key recovery at the top is also more difficult
than for the composition, as one has to control both branches simultaneously.
We argue that this is only possible under strict conditions. As an interesting
side result, our general findings imply that the previous differential attack on
Orthros published in [44] must be reviewed.

This novel practical general approach leads to our main result: with respect
to the most important attack vectors (with the exceptions mentioned above),

4 A. Flórez-Gutiérrez et al.

the sum E1 ⊕ E2 is as secure as the composition E2 ◦ E−1
1 . Taking a secure

block cipher and splitting it into equal parts, with some additional analysis to
cover the exceptions, leads to a PRF that is secure against all known attacks. Of
course, this does not rule out the existence of new attacks, but this is the case
for all new symmetric primitives.

Instances. To showcase the power and flexibility of our approach, we give a
concrete instance in Sect. 4: ZIP-AES, a variant built as the sum of two 5-round
AES. This results in a secure PRF with half the latency of AES-CTR and twice
the security in terms of data complexity. When implemented with AES-NI, as
inverse rounds are more costly, it does not achieve half the latency, but still
provides slightly better running times, as detailed in Sect. 4.3.

We finally mention that a ZIP cipher based on a 64-bit lightweight block
cipher is promising, e.g., ZIP-GIFT in Sect. 5. The resulting PRF is secure up
to the entire 264 blocks, which is enough for all practical cases, while the counter
mode of such a 64-bit block cipher can be broken with only 232 blocks of data
complexity. Again, not only would security double, but the latency would also
be halved, and therefore, it would be very competitive with the dedicated low-
latency designs mentioned above.

2 Preliminaries

2.1 Known Attacks on Symmetric Primitives

We work a lot with linear and differential attacks and their variants. We expect
the reader to be familiar with them and use this section to fix our notation.

Differential Cryptanalysis [13]. Differential attacks use pairs of plaintexts
with a well-chosen difference. For a function F : Fn

2 → Fm
2 , a given input differ-

ence α ∈ Fn
2 , and an output difference β ∈ Fm

2 , we denote by

Prob(α
F−→ β) =

|{x ∈ Fn
2 | F(x)⊕ F(x⊕ α) = β}|

2n

the probability that the difference α results in the difference β. Given two (or
more) functions F : Fn

2 → Fm
2 and G : Fm

2 → Fℓ
2, a differential trail or character-

istic for G◦F also includes an intermediate difference γ. Its probability is usually
estimated by multiplying the probabilities

Prob(α
F−→ γ

G−→ β) ≃ Prob(α
F−→ γ) · Prob(γ G−→ β),

which can be justified if F and G are key-alternating ciphers with independent
round keys and considering the average probability over all keys. From now on,
we adopt this independence assumption. Without assumptions, it holds that

Prob(α
G◦F−−→ β) =

∑
γ

Prob(α
F−→ γ

G−→ β),

which is referred to as a differential in contrast to a differential trail.

General Practical Cryptanalysis 5

Linear cryptanalysis [46]. A linear approximation is a linear combination
of input and output bits of the cipher. The main measure of its quality is its
correlation. Given a function F, an input mask α, and output mask β, it’s

corF(α, β) = Probx (⟨β,F(x)⟩ = ⟨α, x⟩)− Probx (⟨β,F(x)⟩ ≠ ⟨α, x⟩) .

Again, given two functions, a linear trail for the composition is specified by an
input mask α, an intermediate mask γ, and an output mask β, and its correlation
contribution is formally defined as corF(α, γ) corG(γ, β). The set of all linear
trails sharing the same input and output masks is often called linear hull. This
definition is motivated by the fact that

corG◦F(α, β) =
∑
γ

corF(α, γ) corG(γ, β).

Similarly, given a Boolean function f : Fn
2 −→ F2, its correlation is

cor(f) = Probx (f(x) = 0)− Probx (f(x) = 1) .

Differential-linear cryptanalysis. The data complexity is given by the au-
tocorrelation, which for an input difference δ and output mask α is defined as

AutF(δ, α) = Probx (⟨α,F(x)⊕ F(x⊕ δ)⟩ = 0)−Probx (⟨α,F(x)⊕ F(x⊕ δ)⟩ = 1) .

In most cases, it is infeasible to obtain all trails in a linear hull or a differen-
tial. Hence, security arguments are often based on bounding the probability or
correlation of trails. We mainly stick to this approach in this work.

2.2 The Sum-of-PRPs

Constructing PRFs from PRPs is a well-studied topic from a provable security
perspective. The sum-of-PRPs construction is a well-known research topic. It
was initially introduced by Bellare et al. at EUROCRYPT 1998 [9]. The first
proof of its security was given by Lucks at EUROCYPT 2000 [45], where he
proved a suboptimal security bound up to 22n/3 queries. This was improved
by Bellare and Impagliazzo [8] to 2n/n. Finally, with the introduction of the
H-coefficient technique, Patarin [49] proved the optimal full n-bit security, and
Dutta et at. in [26] filled some gaps in Patarin’s proof. Very recently, Dinur [24],
using Fourier-analysis, proved optimal bounds for the general case of the sum of
permutations and the multi-user setting. A good survey of the state of the art
of this and other constructions is given in the later paper as well as in [39].

Complementing this line of work, some recent work has focused on the ques-
tion of constructing a public function from public (i.e., non-keyed) permutations.
This setting requires the notion of indifferentiability and is technically more in-
volved. After several attempts that turned out to be flawed or non-optimal, the
work of Gunsing et al. finally settled the result at CRYPTO 2023 [34].

6 A. Flórez-Gutiérrez et al.

Despite the general usefulness of constructing a pseudo-random function,
there was for a long time no practical cryptanalysis discussion against this con-
struction, mainly because there were no practical instances that have been used
or even proposed. The first concrete design was, to the best of our knowledge,
Orthros [4]. Motivated by the fact that the output of each pseudo-random per-
mutation is not visible to the attacker, the authors used the so-called proof-then-
prune approach [38] to realize an efficient pseudo-random function by reducing
the rounds of the two parts. This significantly improved the latency of the re-
sulting scheme but required dedicated cryptanalysis. As discussed below, getting
this analysis right is more difficult than usual, in particular when considering
differential-type attacks with key recovery.

To capture all designs derived by summing two not necessarily pseudo-random
permutations, we give the following general definition.

Definition 1 (P ⊕Q). Let P,Q be two families of permutations, indexed by the
keys kp, kq in the sets P and Q, respectively:

(x, kP) ∈ Fn
2 × P 7→ Pkp

(x) ∈ Fn
2 , (x, kQ) ∈ Fn

2 ×Q 7→ Qkq
(x) ∈ Fn

2 .

We define the P ⊕Q construction as the following family of functions:

P ⊕Q : Fn
2 × P ×Q → Fn

2

(x, (kP , kQ)) 7→ Pkp
(x)⊕Qkq

(x).

Unlike in provable security analysis, it is not assumed that P and Q are
pseudo-random permutations. In other words, P and Q are not necessarily secure
block ciphers with sound security claims on their own. Our objective is to reveal
whether P ⊕Q enhances the practical security in the context of cryptanalysis.

3 General Practical Cryptanalysis of P ⊕ Q

This section discusses the resistance of the P⊕Q construction against well-known
attack families, and compares it to compositions of P , Q and their inverses. As
stated above, for our arguments, we make the usual assumption on the indepen-
dence of rounds and therefore multiply probabilities over multiple rounds. While
for attacks, this tends to lead to flawed complexity estimations, for security ar-
guments there is currently no alternative technique avoiding this.

3.1 Differential Cryptanalysis

Differential Characteristic Equivalence. The differential trails of the par-
allel construction P ⊕Q are tightly linked to those of the sequential construction
Q ◦ P−1, as shown by the following result:

Proposition 1. Let P,Q be two keyed permutations over Fn
2 , and let F := P⊕Q

and S := Q◦P−1. For each differential trail with probability p traversing F, there
is a trail traversing S with the same probability p.

General Practical Cryptanalysis 7

P Q P Q

Fig. 1: Differential and linear trail equivalence

Proof. Given δI , δO ∈ Fn
2 , we consider the differential δI

F−→ δO. All its trails take
the same form given by the choice of γ ∈ Fn

2 and have probability

p = Prob(δI
P−→ γ) · Prob(δI

Q−→ γ ⊕ δO).

Since Prob(δI
P−→ γ) = Prob(γ

P−1

−−−→ δI), p is also the probability of the differ-

ential trail γ
P−1

−−−→ δI
Q−→ γ ⊕ δO traversing S. ⊓⊔

The left diagram in Fig. 1 shows the trail equivalence between P⊕Q and Q◦P−1.

Aggregating the Trails. While individual trails of P ⊕ Q and Q ◦ P−1 are
equivalent (and thus both have the same maximum differential trail probability),
it is hard to compare the resulting differential probabilities when adding up all
the trail probabilities in a differential. We can try to compare the expected
differential probability (EDP) of both constructions:

Prob(δI
P⊕Q−−−→ δO) =

∑
γ

Prob(γ
P−1

−−−→ δI) · Prob(δI
Q−→ γ ⊕ δO),

Prob(δI
Q◦P−1

−−−−−→ δO) =
∑
γ

Prob(δI
P−1

−−−→ γ) · Prob(γ Q−→ δO).

However, we quickly realize that both sums cover sets of differential trails which
are non-equivalent, which makes further analysis difficult. Indeed, in the case of

P⊕Q, the sum covers all trails γ
P−1

−−−→ δI
Q−→ γ⊕δO for all γ, and δI

P−1

−−−→ γ
Q−→ δO

in the case of Q◦P−1. Therefore, the maximum expected differential probability
(MEDP) is not necessarily identical.

Taka et al. studied this effect on multiple-branch-based designs and investi-
gated the differential clustering effect on Orthros [51]. They focused on several
γ, evaluated the clustering effect on each branch for each γ, and combined them.
On the other hand, in general, we do not expect either P ⊕ Q or Q ◦ P−1 to

8 A. Flórez-Gutiérrez et al.

have a stronger clustering effect because the number of terms in both sums is
the same. More importantly, the clustering inside P and Q is exactly the same
in both cases. We also note that if P and Q are almost the same structure,

Prob(δI
P⊕Q−−−→ 0) is expected to be high, but so will be Prob(δI

Q◦P−1

−−−−−→ δI).

On Key Recovery in Differential Cryptanalysis. Regarding the key re-
covery based on the differential attack, P ⊕Q appears to be more resilient than
Q ◦P−1. More precisely, we find an inevitable difficulty in mounting an effective
key-recovery attack on P ⊕Q.

The most common strategy for the key-recovery attack is to append key-
recovery rounds to the differential distinguisher. We construct a differential dis-
tinguisher and append key-recovery rounds for attacking more rounds. The data
complexity depends on the probability of the differential distinguisher, since the
key-recovery rounds are deterministic under each key guess. We now consider
two possible key-recovery strategies: it is added to the output or input.

Key Recovery on the Output Side. The output is P (x)⊕Q(x), where P (x) and
Q(x) are unknown to the attacker. It is unlikely to add key recovery unless the
attacker can compute at least part of (differences in) P (x) or Q(x). We suppose
P and Q contain almost the same rounds. This implies that the key-recovery
part can cover half of the total round when we attack the composition. As long
as this is not the case, adding key-recovery at the output is not possible.

Key Recovery on the Input Side. Key recovery on the input side seems more
natural because the attacker knows or even chooses the inputs to P and Q. We
consider a differential key-recovery attack on F := (P2◦P1)⊕(Q2◦Q1), where the
input differences to P2 and Q2 are fixed to δP and δQ, respectively. Therefore,

we exploit a high differential probability p = Prob((δP , δQ)
P2⊕Q2−−−−→ δO) with key

recovery on P1 and Q1. Conventionally, the data complexity can be p−1 in the
optimal case, but we show such a strategy does not work.

Proposition 2. Let F = (P2 ◦ P1)⊕ (Q2 ◦Q1). We consider a differential key-
recovery attack where the input differences of P2 and Q2 are fixed to δP and δQ,
respectively, and the output difference is δO. The necessary key material from P1

and Q1 is guessed. Such an attack works only when

Prob((δP , δQ)
P2⊕Q2−−−−→ δO) · Prob(δP

Q1◦P−1
1−−−−−→ δQ) > 2−n .

Proof. Let us count the number of input pairs X,X ′ to P ⊕ Q that produce a
difference of δP after P1 and δQ after Q1 simultaneously.

T = |{(X,X ′) | P1(X)⊕ P1(X
′) = δP and Q1(X)⊕Q1(X

′) = δQ}|
= |{(x, x⊕ δP) | Q1 ◦ P−1

1 (x)⊕Q1 ◦ P−1
1 (x⊕ δP) = δQ}|

= 2n · Prob(δP
Q1◦P−1

1−−−−−→ δQ)

General Practical Cryptanalysis 9

Observing that the expected data complexity for the distinguisher is at least
the inverse of the probability of the differential and at most T , i.e.

Prob((δP , δQ)
P2⊕Q2−−−−→ δO)

−1 < T

leads to the claimed result. ⊓⊔

In practice, the attacker would choose a differential trail given by δP
P2−→ γ and

δQ
Q2−−→ γ ⊕ δO and estimate the probability of the resulting distinguisher as

Prob((δP , δQ)
P2⊕Q2−−−−→ δO) ≈ Prob(δP

P2−→ γ) · Prob(δQ
Q2−−→ γ ⊕ δO).

The usual condition Prob(δP
P2−→ γ) ·Prob(δQ

Q2−−→ γ⊕δO) > 2−n is not sufficient
for an attack to be possible. If

Prob(γ
P−1

2−−−→ δP) · Prob(δP
Q1◦P−1

1−−−−−→ δQ) · Prob(δQ
Q2−−→ γ ⊕ δO) < 2−n,

there may be no pairs satisfying the differential characteristic.

Review of the Differential Key-Recovery Attack against Orthros in [44]. Proposi-
tion 2 implies that the data complexity of a differential key-recovery attack must
be estimated carefully. In a nice paper at Africacrypt 2022, Li, Sun, and Wang
proposed differential cryptanalysis against round-reduced Orthros. Their attacks
add a 1-round key recovery to the input side of both branches. Specifically, they
prepared pairs of chosen plaintexts whose differences take the form

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, δ1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, δ2, 0, 0, 0, δ3, 0).

Branch 1 requires three nibble difference transitions in the Sbox layer: δ1
S−→ 0x2,

δ2
S−→ 0x2, and δ3

S−→ 0x8. Similarly, branch 2 requires δ1
S−→ 0x8, δ2

S−→ 0x1, and

δ3
S−→ 0x2. Excluding these first S-box layers, the differential probability on each

branch is estimated as 2−64 and 2−48, so the total probability is p = 2−112. They
finally estimated the data complexity as 2115 based on their attack framework.

Proposition 2 implies that a key-recovery attack is possible only when

p · Prob(0x2 S◦S−1

−−−−→ 0x8) · Prob(0x2 S◦S−1

−−−−→ 0x1) · Prob(0x8 S◦S−1

−−−−→ 0x2) > 2−128.

This probability highly depends on the key (difference) involved in S ◦S−1. The
detailed review is shown in the full version [28]. We notice that the probability
is zero for more than half of the keys in each Sbox. Therefore, it is a weak-key
attack whose fraction of weak keys is 5/16× 7/16× 5/16 ≈ 2−4.55.

We assume that one of the weak keys is used. Since the attacker does not
know which (weak) key is used, the attacker must fully activate corresponding
12-bit inputs. Among 12-bit active inputs, we can construct about 224 pairs.
However, given a fixed key, the number of pairs satisfying input differences of
both branches is limited. In some (weak) keys, the number is only 8 (see the full

10 A. Flórez-Gutiérrez et al.

version [28] for details). Therefore, to observe differential characteristics with
p = 2−112, we need at least 2109 texts in addition to the 12-bit active. As a
result, the attacker must use at least 2109+12 = 2121 chosen plaintexts to lead a
valid key-recovery attack for all keys belonging to the weak keys, which is more
than 2115 by the analysis of [44].

Remark 1. Assuming that the keys in three active S-boxes are identical in P
and Q, the input differences of the two branches must be the same because

Prob(δP
S◦S−1

−−−−→ δQ) = 0 for δP ̸= δQ. In other words, to lead the key-recovery
attack that is valid for all keys, it is necessary to construct differential charac-
teristics whose input differences are equal in both branches.

3.2 Linear Cryptanalysis

Linear Characteristic Equivalence. Similarly to the differential cryptanaly-
sis, the linear trails of P⊕Q are equivalent to those of the sequential construction
Q−1 ◦ P , as shown in the right diagram of Fig. 1, and by the following result:

Proposition 3. Let P,Q be two keyed permutations over Fn
2 , and let F := P⊕Q

and S∗ := Q−1 ◦P . For each linear trail with correlation c traversing F, there is
a linear trail with the same correlation c traversing S∗.

Proof. Consider any masks α, γ, β ∈ Fn
2 , let c = corP (γ, β) corQ(γ⊕α, β) be the

correlation of a linear trail through F. Again, notice that

corP (γ, β) corQ(γ ⊕ α, β) = corP (γ, β) corQ−1(β, γ ⊕ α).

Thus, c is the correlation of the linear trail γ
P−→ β

Q−1

−−−→ γ⊕α traversing S∗. ⊓⊔

Similar to differential cryptanalysis, while individual trails or characteristics
are equivalent, it is hard to compare the resulting linear approximation correla-
tion when adding up the trail correlation contributions:

corF(α, β) =
∑
γ

corP (γ, β) corQ(γ ⊕ α, β),

corS∗(α, β) =
∑
γ

corP (α, γ) corQ(β, γ).

It is possible that the largest correlations of the linear approximations F and S∗

are not the same, due to differences in the clustering effect for both constructions.

About Sequential Applications. One peculiar aspect of Propositions 1 and
3 is that the sequential function with equivalent trails or characteristics differs
between the differential (S := Q ◦ P−1) and linear (S∗ := Q−1 ◦ P) cases. This
occurs because differential trails traversing F must coincide in the input of the

General Practical Cryptanalysis 11

two branches (the output differentials can be added) while linear trails must
coincide in the output of the two branches (the input masks can be added).

However, in the case in which Q = {P−1|P ∈ P}, then the compositions
S = S∗ conform the same set of permutations, and F has the same differential
and linear characteristics as P1 ◦ P2, where P1, P2 ∈ P. This is the ZIP-design
strategy we employ in Sections 4 and 5.

We note that the behavior of both constructions is not necessarily the same
when it comes to trail clustering (so that the maximum differential probability
or correlation may still differ). Again, all the clustering that happens within P
and/or Q is equivalent in S, S∗, and P ⊕ Q. Thus, even so our argument does
not cover all possible clustering, it covers more than done in both attacks in the
vast majority of cases.

On Key Recovery in Linear Cryptanalysis. Unlike with differential crypt-
analysis, it is possible to mount linear key-recovery attacks on P ⊕Q. While it
is not possible on the output side due to the irreversibility of the XOR opera-
tion, it is possible on the input side. Indeed, assume that the branches can be
written as P = P2 ◦P1 and Q = Q2 ◦Q1. We are given a linear approximation of
P2 ⊕Q2, and we want to perform key recovery over P1 and Q1. As long as the
combined size of the necessary key guesses to determine the parity of the input
masks to P2 and Q2 is small enough, it is possible to perform key recovery on
both P1 and Q1 simultaneously without increasing the data complexity. Linear
cryptanalysis is a known plaintext attack, so the cryptanalyst does not need
to control internal values in either branch and, most notably, does not need to
control both branches at the same time, which is the impediment to differential
key-recovery attacks). In summary, linear key-recovery attacks over the first few
rounds of P and Q can be carried out in the same manner as on an iterative
block cipher. Thus, assuming that differential and linear distinguishers cover the
same number of rounds, linear cryptanalysis may lead to stronger attacks.

3.3 Differential-Linear Cryptanalysis

We next look at differential-linear cryptanalysis. First, we investigate how the
autocorrelation of P ⊕ Q is related to the properties of P and Q, and we find
the following straightforward result:

Proposition 4. Let P,Q be keyed permutations over Fn
2 and let F = P ⊕Q. Let

δ ∈ Fn
2 be an input difference, and let α ∈ Fn

2 be an output linear mask. Then

AutF(δ, α) = AutP (δ, α) ·AutQ(δ, α).

Proof. From the definition of the autocorrelation:

AutF(δ, α) = cor (⟨α,F(x)⟩ ⊕ ⟨α,F(x⊕ δ)⟩)
= cor (⟨α, P (x)⟩ ⊕ ⟨α,Q(x)⟩ ⊕ ⟨α, P (x⊕ δ)⟩ ⊕ ⟨α,Q(x⊕ δ)⟩)
= cor (⟨α, P (x)⟩ ⊕ ⟨α, P (x⊕ δ)⟩ ⊕ ⟨α,Q(x)⟩ ⊕ ⟨α,Q(x⊕ δ)⟩) .

12 A. Flórez-Gutiérrez et al.

Assuming the independence of both halves of the expression (or, alternatively,
that cor (⟨α, P (x)⟩ ⊕ ⟨α,Q(x)⟩) is negligible), we deduce:

AutF(δ, α) = cor (⟨α, P (x)⟩ ⊕ ⟨α, P (x⊕ δ)⟩) · cor (⟨α,Q(x)⟩ ⊕ ⟨α,Q(x⊕ δ)⟩)
= AutP (δ, α) ·AutQ(δ, α)

from the piling-up-lemma [46]. ⊓⊔

We note two important differences between this result and the ones for differ-
ential and linear distinguishers. It describes the behavior of a whole differential-
linear distinguisher without singling out an individual trail. However, the au-
tocorrelation cannot generally be related to that on the composition of P,Q or
their inverses, and relies just on the product of the autocorrelations for P and Q.
This does not make a large difference for constructions in which the logarithm
of the maximum autocorrelation decreases linearly with the number of rounds,
but it may create a gap when this exponent decreases very quickly.

Practical Strategies for Finding DL Distinguishers. The autocorrelation
of F is computed as the multiplication of the autocorrelations of P and Q having
the same input difference and output mask. On the other hand, in practice a DL
distinguisher is found by studying a trail perspective.

Traditionally, a cipher is separated into two parts, so that a differential trail
is considered over the first part and a linear trail over the second. Let P =

Pl ◦ Pd and Q = Ql ◦ Qd, where differentials δ
Pd−−→ δP and δ

Qd−−→ δQ and

linear approximations on αP
Pl−→ β and αQ

Ql−−→ β are known. We consider the
composition S := P−1

l ◦Ql ◦Qd ◦P−1
d . Then, the differential-linear distinguishers

δ
F−→ β and δP

S−→ αP are expected to have the same autocorrelation, assuming
that these trails are dominant and independent. When Pd and Pl are iterations
of the round function and Qd and Ql are iterations of the inverse round function,
P ⊕Q is equivalent to the composition.

On the other hand, we can consider truncated differentials, (δP , δQ) ∈ UP ×
UQ, instead of a single differential trail. As mentioned later, the behavior of the
truncated differential is different in P ⊕ Q and the composition. Moreover, the
differential-linear hull aggregates multiple intermediate masks instead of a single
intermediate mask. When we switch differential trails into linear trails, we also
have the so-called independence assumption issue. In particular, the strategy
above has two different switches for each side of P and Q. Considering such
a complicated situation, it is preferable to analyze the autocorrelation of each
branch rather than optimistically trusting the relationship to the composition.

On Key Recovery in Differential-Linear Cryptanalysis. Considering the
differential-linear key recovery, a similar problem arises to the one shown in
the differential key recovery: it is necessary to control input differences in both
branches simultaneously, which puts a limitation on the usable distinguishers.

General Practical Cryptanalysis 13

Proposition 5. Let F = (P2 ◦P1)⊕ (Q2 ◦Q1). We consider a differential-linear
key-recovery attack, where the input differences of P2 and Q2 are δP and δQ,
respectively. The output linear mask is α. The necessary key material from P1

and Q1 is guessed. Such an attack works only when

(AutP2(δP , α) ·AutQ2(δQ, α))
−2

< 2n · Prob(δP
Q1◦P−1

1−−−−−→ δQ).

Proof. Let δP and δQ be fixed input differences of P2 and Q2, respectively.
Let α be the output linear mask. Therefore, assuming the input pairs to P2

and Q2 already satisfy δP and δQ, the necessary number of pairs is estimated as

(AutP2(δP , α) ·AutQ2(δQ, α))
−2

. The number of available pairs satisfying δP and

δQ at the same time is expected as 2n · Prob(δP
Q1◦P−1

1−−−−−→ δQ). Therefore, when

this number is less than (AutP2(δP , α) ·AutQ2(δQ, α))
−2

, the attacker cannot
collect enough pairs to complete the attack. ⊓⊔

Review of the DL Key-Recovery Attack against Orthros in [44]. We again review
the existing attack against Orthros proposed at [44]. It also presents differential-
linear cryptanalysis. It uses a differential-linear distinguisher whose autocorrela-
tion is 2−46. They also estimated the data complexity to be 295 chosen plaintexts.

This has the same problem as the key recovery in differential attacks, i.e.,
the attack is a weak-key attack and requires a higher data complexity than
their estimation. The key-recovery structure is the same as the differential case.
Therefore, the fraction of weak keys is 2−4.55. From 12-bit active inputs, there
are weak keys, where the number of pairs satisfying input differences of both
branches is only 8. Therefore, to recover any weak key, we need at least 246×2/8×
212 = 2101 chosen plaintexts, which is more than 295 by the previous estimation.

3.4 Differential-and-Linear Key-Recovery Attack

In previous sections, we have noted that attacks which require the adversary to
control an input difference in both branches are difficult to turn into key-recovery
attacks. On the other hand, linear attacks lend themselves well to key recovery
because of the known-plaintext nature. We next introduce a hybrid key-recovery
attack which uses a differential-linear distinguisher on one of the branches and
a linear distinguisher on the other. On the differential-linear branch, the key
recovery can be performed because the attacker can control the input difference
by choosing plaintexts as in a standard differential or differential-linear attack.
On the linear branch, the attacker only needs to establish the parity of the input
linear mask, so it does not interfere with the key recovery on the other branch.

Let us describe this situation in more detail (see Figure 2). P is divided into
P = P2 ◦ P1. Key recovery will be carried out on P1 while a differential-linear
distinguisher is considered on P2 with input difference δ, output mask β, and
autocorrelation c1. Q is also divided into Q = Q2 ◦Q1 where Q1 is reserved for
key recovery, and a linear approximation with masks α and β and correlation c2
is considered for Q2. We note that the roles of P and Q can be exchanged.

14 A. Flórez-Gutiérrez et al.

Fig. 2: The differential-and-linear key-recovery attack on P ⊕ Q (left) and
differential-linear key-recovery attack on Q−1 ◦ P .

By guessing parts of the key in P1 and Q1, the attacker can compute the
following parity from arbitrary X.

⟨β,F(X)⟩ ⊕ ⟨β,F(P−1
1 (P1(X)⊕ δ))⟩ ⊕ ⟨α,Q1(X)⟩ ⊕ ⟨α,Q1(P

−1
1 (P1(X)⊕ δ))⟩.

Thus, by querying enough plaintexts, the attacker can obtain the experimental
correlation.

We will first determine the correlation of this function, and then we will
briefly describe the key-recovery attack algorithm. For the former, we note that
we can, by expanding F, rearrange the formula as follows:

⟨β, P2(P1(X))⟩ ⊕ ⟨β, P2(P1(X)⊕ δ)⟩⊕
⟨α,Q1(X)⟩ ⊕ ⟨β,Q2(Q1(X))⟩⊕
⟨α,Q1(P

−1
1 (P1(X)⊕ δ))⟩ ⊕ ⟨β,Q2(Q1(P

−1
1 (P1(X)⊕ δ)))⟩

From the assumptions on the distinguishers for P2 and Q2, the correlation of
the first line is c1, and the correlations of the second and third lines are c2. As
a result, and from the piling-up lemma, we deduce that the correlation for the
whole expression is c1 · c22, which means an attack can be mounted with data
complexity c−2

1 c−4
2 .

We next sketch the key recovery algorithm for this attack. Using a key guess
in P1, the attacker can use structures to construct pairs (X,X ′) so that P1(X)⊕
P1(X

′) = δ in the same way they would for a differential or a differential-linear
attack, and at the same cost. Once these pairs (X,X ′) are constructed, a guess of
part of the key in Q1 enables the attacker to determine the values of ⟨α,Q1(X)⟩
and ⟨α,Q1(X

′)⟩. With these, and for each key guess, the attacker can compute
the experimental correlations of

⟨β,F(X)⟩ ⊕ ⟨β, F (X ′)⟩ ⊕ ⟨α,Q1(X)⟩ ⊕ ⟨α,Q1(X
′)⟩,

General Practical Cryptanalysis 15

where X and X ′ are constructed so that P1(X) ⊕ P1(X
′) = δ. We verified our

assumption and validity of our key-recovery attack by using ZIP-AES introduced
in the next section. In detail, we discuss it in the full version [28].

Interestingly, again this kind of attack is related to a cryptanalysis on the
composition of P and Q (see the right diagram of Fig. 2). Indeed, we notice that
the differential-linear distinguisher on P2 and the linear approximation of Q2 can
be combined into a differential-linear distinguisher on Q−1

2 ◦ P2. Furthermore,
the whole key-recovery attack corresponds to a differential-linear key-recovery
attack on Q−1 ◦ P guessing the same key material. However, we note that the
autocorrelation of the differential-linear distinguisher on the composition may
be larger, because the intermediate mask β is not fixed, while in the case of the
attack on F the mask β has to be fixed by the attacker.

3.5 Truncated Differential Cryptanalysis

A variant of classical differential cryptanalysis is truncated differential cryptanal-
ysis [41], in which the attacker can predict only part of the difference between
pairs of texts. When considering truncated differentials cryptanalysis, the paral-
lel construction F := P ⊕Q seems to offer a security that is hardly comparable
with any sequential construction and thus may require a dedicated analysis,
which is also to be expected when compared to differential-linear attacks.

Firstly, the parallel and sequential constructions involving inverse permu-
tations become hardly comparable as truncated differentials do not propagate
backwards so that truncated differential characteristics in P generally differ from
characteristics in P−1.

Secondly, if we consider the sequential construction S := Q ◦ P−1 then a
truncated differential attack works as such for any linear subspaces U ,V,W:

Prob
(
P−1(x)⊕ P−1(x⊕ α) ∈ V | x ∈ Fn

2 , α ∈ U
)
= p

Prob (Q(x)⊕Q(x⊕ β) ∈ W | x ∈ Fn
2 , β ∈ V) = q

=⇒ Prob (S(x)⊕ S(x⊕ α) ∈ W | x ∈ Fn
2 , α ∈ U) ≥ p · q .

On the other hand, Proposition 6 shows how to mount a truncated differential
attack on P ⊕Q:

Proposition 6. Let P,Q be two keyed permutations over Fn
2 , and let F := P⊕Q.

Let UP ,UQ,VP ,VQ ⊆ Fn
2 be four non-trivial linear subspaces such that UP ∩

UQ is non-empty. Assume that the following truncated differentials hold with
probabilities p, q ∈ (0, 1] respectively:

Prob (P (x)⊕ P (x⊕ α) ∈ VP | x ∈ Fn
2 , α ∈ UP) = p ,

Prob (Q(x)⊕Q(x⊕ β) ∈ VQ | x ∈ Fn
2 , β ∈ UQ) = q .

Then:

Prob (F(x)⊕ F(x⊕ γ) ∈ VP ⊕ VQ | x ∈ Fn
2 , γ ∈ UP ∩ UQ) ≥ p · q .

16 A. Flórez-Gutiérrez et al.

We note that ⊕ denotes the sum of binary vector subspaces, which may not
necessarily be a direct sum. Obviously, if VP ⊕VQ = Fn

2 is the full space, the last
probability is equal to 1, making the truncated differential to be meaningless.
This is not the case for S.

Proof. Let x ∈ Fn
2 . We know that P (x)⊕P (x⊕ γ) ∈ VP with probability p over

γ ∈ UP , and that Q(x)⊕Q(x⊕γ) ∈ VQ with probability q over γ ∈ UQ. Assuming
that both events are statistically independent of each other, over γ ∈ UP ∩ UQ,
the probability that they both occur at the same time is p · q. Since VP and VQ

are vector subspaces, we have

F(x)⊕ F(x⊕ γ) = P (x)⊕Q(x)⊕ P (x⊕ γ)⊕Q(x⊕ γ) ∈ VP ⊕ VQ,

which concludes the proof. ⊓⊔
As shown in Proposition 6, an interesting constraint to find a truncated differ-
ential attack on P ⊕Q is to find two linear subspaces UP and UQ such that both
UP ∩ UQ is not empty and VP ⊕VQ is not the full space Fn

2 . As a result, even if
we find two truncated differentials, where p and q are high enough, it does not
always guarantee a non-trivial truncated differential on F.

Based on this, we encourage to pay particular attention when arguing the
security against truncated differentials.

On Key Recovery in Truncated Differential Attacks. Extending a trun-
cated differential distinguisher into a key recovery presents the same problems
discussed in Sect. 3.1 for the analogous case of differential cryptanalysis.

Proposition 7. Let F = (P2◦P1)⊕(Q2◦Q1). We consider a key-recovery attack,
where the truncated input differences of P2 and Q2 are in the affine subspace UP

and UQ respectively, and the key involved in P1 and Q1 is guessed. When N
pairs are needed for the distinguishing attacks based on the truncated differential

to succeed, (UP ,UQ)
P2⊕Q2−−−−→ V, such an attack works only when

2n · |UP | · Prob(UP
Q1◦P−1

1−−−−−→ UQ) > N .

As the input of P2, the number of pairs satisfying the truncated differential
is 2n · |UP |. To mount the key recovery, the attacker needs to find pairs that
satisfy the truncated differential in the input of Q2 simultaneously. Therefore,

the number of pairs we can collect is 2n · |UP | · Prob(UP
Q1◦P−1

1−−−−−→ UQ). If this
value is less than N , it is insufficient to execute the key-recovery attack.

Impossible (Truncated) Differentials. An impossible (truncated) differen-
tial [11] is a (truncated) differential that holds with probability 0. In general,
the existence of impossible differentials for the composition does not imply the
existence of non-trivial3 impossible differentials for F := P ⊕Q.

3 If F(x) belongs to U with probability 1 for each x ∈ V, then F(x) ∈ Uc with proba-
bility 0, where ·c is the complimentary subspace.

General Practical Cryptanalysis 17

Assuming Prob(δI
Q−1◦P−−−−−→ δO) = 0, let VP and VQ denote a subset satisfying

Prob(δI
P−→ VP) = Prob(δO

Q−→ VQ) = 1, and VP ∩VQ = ϕ. In contrast, assuming

Prob(δI
F−→ δO) = 0, it implies Prob(δI

P−→ VP) = Prob(δI
Q−→ VQ) = 1, and

VP ∩ (VQ ⊕ δO) = ϕ. The former can choose both input differences for P and Q
arbitrarily. The latter restricts them to be the same, but we can add arbitrary
δO to VQ. While it finally depends on case by case, probably, the former is easier
to find impossible differentials than the latter.

3.6 Algebraic and Integral Attacks

The security of P ⊕Q against algebraic attacks does not seem much better than
the most secure between P and Q against this family of cryptanalysis. In this
section, we formulate the cipher as a polynomial on the key and input bits. More
precisely, we interpret the cipher as a multivariate polynomial of the n input bits
of x with coefficients that are functions of the key k,

F(k, x) :=
⊕
u∈Fn

2

fu(k)x
u .

The degree of F is defined as the highest degree monomial with a non-zero
coefficient, that is, deg(F) := maxu{wt(u) | fu(k) ̸= 0}, where wt(u) denotes
the Hamming weight of u. Since the attacker usually exploits the weakest bit, or
more generally component function, the minimum degree is more important than
the degree: minDeg(F) := minβ deg(⟨β,F(k, x)⟩). However, in terms of security,
we rather look at non-constant coefficients only, as any monomial that is key-

independent distinguishes the function from random. Therefore, we define d̃eg

and m̃inDeg as follows:

d̃eg(F) := max
u

{wt(u) | fu(k) is not constant},

m̃inDeg(F) := min
β

d̃eg(⟨β,F(k, x)⟩).

Proposition 8. Let P,Q be keyed permutations over Fn
2 and F := P ⊕Q, then:

m̃inDeg(F) = min
β

max{d̃eg(⟨β, P ⟩), d̃eg(⟨β,Q⟩)} .

Proof. Let kP and kQ in KP and KQ, respectively, and let:

⟨β, P (kP , x)⟩ :=
⊕
u∈Fn

2

pβ,u(kP)x
u , ⟨β,Q(kQ, x)⟩ :=

⊕
u∈Fn

2

qβ,u(kQ)x
u .

Given k := kP ∥kQ ∈ KP ×KQ, summing the polynomials for P and Q:

⟨β,F(k, x)⟩ =
⊕
u∈Fn

2

fβ,u(k)x
u =

⊕
u∈Fn

2

(pβ,u(kP) + qβ,u(kQ))x
u .

18 A. Flórez-Gutiérrez et al.

So we have fβ,u = pβ,u + qβ,u defined on inputs k ∈ KP ×KQ. Note that fβ,u is
constant if and only if pβ,u and qβ,u are constant. Therefore, we conclude by:

d̃eg(⟨β,F⟩) = max
u

{wt(u) : pβ,u is not constant or qβ,u is not constant}

= max
{
max
u

{wt(u) : pβ,u is not constant},max
u

{wt(u) : qβ,u is not constant}
}

= max{d̃eg(⟨β, P ⟩), d̃eg(⟨β,Q⟩)} .

⊓⊔

To show that a cipher is secure against algebraic attacks often involves arguing
that the cipher reaches a high degree. Proposition 8 shows that P ⊕Q can only
reach a high degree if either P or Q reaches it. Thus, integral attacks could be
one of the most powerful attacks on P ⊕ Q. Indeed, if a cipher has a degree
d then the cipher is vulnerable to an integral attack for any linear subspace
with dimension d+ 1. In particular, if P has degree d greater than Q, then any
dimension d + 1 linear subspace will allow an integral attack on both P and Q
simultaneously, so on P ⊕Q as well.

A similar statement holds for the stronger arguments against integral attacks
as given in [37]. Again, to argue for full resistance against integral cryptanalysis
either P or Q already has to be fully resistant.

On Key Recovery in Integral Attacks. On the other hand, we cannot expect
a strong integral key-recovery attack. Usually, the integral key-recovery attack
focuses on the ciphertext side, but it is impossible in P ⊕ Q. In [27], Ferguson
et al. added one-round key recovery to the plaintext side, but it requires almost
the full code book even for one-branch analysis. Besides, we must control the
input of both branches in P ⊕ Q. As discussed above, such a key recovery is
difficult because the inputs of both branches are unlikely to take sets satisfying
higher-order differences simultaneously after applying each key-recovery round
from the common plaintext set.

The cube attack [25] is another possible key-recovery strategy. It is possible
only when fβ,u(k) is a very sparse polynomial. A common block cipher, where
subkey is XORed every round, tends to have complicated polynomials, and the
feature is used to guarantee the lower bound of the degree or the integral resis-
tance property in [36, 37]. Therefore, the cube attack is unlikely in such ciphers

unless m̃inDeg(F) is insufficient.

Zero-Correlation Linear. Instead of considering the zero-correlation linear
[15] explicitly, we first consider the link between the zero-correlation and integral
[14, 50]. When we have zero-correlation linear on F, we also have an integral
distinguisher on F. Therefore, if F is secure enough against the integral, it should
also be secure against the zero-correlation linear.

It is also possible to find the zero-correlation linear directly. However, because
of the analogous argument of the impossible differential, we do not suppose that
the sum is weaker than the composition against the zero-correlation linear.

General Practical Cryptanalysis 19

P Q P Q

P Q

P

P Q

x

x

P

P P

Fig. 3: 2nd-order differential on P ⊕Q (left) and Boomerang on P−1 ◦Q (right).

3.7 Second-Order Differential Cryptanalysis

We look at attacks exploiting independent differential properties of P and Q.
Interestingly, this distinguisher on P ⊕ Q is linked to the Boomerang distin-
guisher [52] on Q−1 ◦ P , as depicted in Figure 3.

Assuming we have two independent differential transitions that are Prob(δP
P−→

δ′P) = p and Prob(δQ
Q−→ δ′Q) = q, then for some x:{

P (x)⊕ P (x⊕ δP) = δ′P , P (x⊕ δQ)⊕ P (x⊕ δQ ⊕ δP) = δ′P ,

Q(x)⊕Q(x⊕ δQ) = δ′Q, Q(x⊕ δP)⊕Q(x⊕ δP ⊕ δQ) = δ′Q

=⇒ F(x)⊕ F(x⊕ δP)⊕ F(x⊕ δQ)⊕ F(x⊕ δQ ⊕ δP) = 0 .

With the usual independent assumptions, this happens with probability (p · q)2
for a random x when F = P ⊕ Q. Therefore, such a second-order differential
requires about 4(p · q)−2 queries to F.

We review the same differential transitions on S = Q−1 ◦ P and perform the
following boomerang attack. For some x,

P (x)⊕ P (x⊕ δP) = δ′P ,

P (S−1(S(x)⊕ δQ))⊕ P (S−1(S(x)⊕ δQ)⊕ δP) = δ′P ,

Q(S(x))⊕Q(S(x)⊕ δQ) = δ′Q,

Q(S(x⊕ δP))⊕Q(S(x⊕ δP)⊕ δQ) = δ′Q,

=⇒ S−1(S(x)⊕ δQ)⊕ S−1(S(x⊕ δP)⊕ δQ) = δP .

This well-known Boomerang holds with a probability of (p · q)2 with some inde-
pendent assumptions. It requires about 4(p · p⋆)−2 queries to S and S−1.

Note that the relationship above ignores some independent issues when switch-
ing differential trails. For example, although δP = δQ is a meaningful parameter

20 A. Flórez-Gutiérrez et al.

for the Boomerang distinguisher on Q−1 ◦ P , it is meaningless on P ⊕ Q. Due
to different independent issues, the resulting Boomerang probability on S and
the 2nd order differential probability on P ⊕Q differ. On the other hand, when
p and q are reasonably high, that is a natural setting in real cryptanalysis, we
would observe a similar feature in both cases.

On Key Recovery in 2nd-Order Differential Attacks. When considering
key recovery, we observe a similar difficulty to that of differential key recovery.
Let P = P2 ◦ P1 and Q = Q2 ◦ Q1. Assuming that there is a non-negligible
2nd-order differential distinguisher on P2 ⊕ Q2. We apply the key recovery to
P1 and Q1. Let (x1, y1), (x2, y2), (x3, y3), and (x4, y4) be the input of (P2, Q2).
Then, a quartet satisfying x1 ⊕ x2 = x3 ⊕ x4 = δP and y1 ⊕ y3 = y2 ⊕ y4 = δQ is
constructed by y1 = Q1◦P−1

1 (x1), x2 = x1⊕δP , y2 = Q1◦P−1
1 (x2), y3 = y1⊕δQ,

x3 = P1 ◦Q−1
1 (y3), x4 = x3 ⊕ δP , and

y4 = Q1 ◦ P−1
1 (x4) = y2 ⊕ δQ .

In general, Q1 ◦ P−1
1 (x4) = y2 ⊕ δQ does not hold with a probability of 1.

3.8 Meet-in-the-middle Attacks

The meet-in-the-middle (MitM) attack [23] is another of the typical cryptanalysis
of keyed symmetric primitives. In a traditional meet-in-the-middle attack, the
adversary obtains a plaintext-ciphertext pair, and aims to extract the key faster
than through an exhaustive search. The attacker guesses part of the key on
the plaintext side and part of the key on the ciphertext side, and constructs
two tables: one consists of all possible partial encryptions of the plaintext and
the other of all possible partial decryptions of the ciphertext. When a collision
between both tables is found, a candidate for both key guesses is obtained.

When applying this approach to the P ⊕ Q construction, we note that no
information about the outputs of both branches can be obtained directly from
the ciphertext. Thus, any MitM attack would require guessing part of one of
the branches. However, by xoring the known ciphertext, this is equivalent to
guessing part of an internal state of Q−1 ◦ P , which is an ineffective guessing
strategy in a MitM attack.

The DS-MitM attack [22] is an extension of the Meet-in-the-Middle attack
and consists of the distinguisher and key recovery. When the distinguisher cov-
ers the initial few rounds in both branches, the key recovery requires the inverse
query but there is no such query in the PRF. When the distinguisher covers the
last few rounds in both branches, it involves the output of the PRF. Therefore,
the parameter size of the distinguisher significantly increases. Consequently, us-
ing the distinguisher in either the inside of P or that of Q is promising, but then,
such an attack is very similar to the attack against the composition, Q−1 ◦ P
too.

General Practical Cryptanalysis 21

3.9 Summary and Other Attacks

In this section, we analyzed differential, linear, differential-linear, differential-
and-linear key recovery, (impossible) truncated differential, algebraic and inte-
gral, zero-correlation linear, the 2nd-order differential, and the MitM attacks.
Some of them are strongly linked to the cryptanalysis against the composition.

When we mount a key recovery, where we need to control differences in
two branches simultaneously, it is more difficult than the corresponding analysis
against the composition. Notably, linear key recovery and differential-and-linear
key recovery are promising attack strategies against the sum structure because
they are friendly to key recovery, but they are strongly linked to linear key
recovery and differential-linear key recovery against the composition.

Other well-known attacks exist. For example, Boomerang [52] or Yo-Yo [10]
attacks require adaptive chosen-plaintext-ciphertext attacks. However, the sum
structure does not provide the decryption query, so applying these attacks is
non-trivial. Note that an amplified Boomerang [40] and Rectangle [12] attacks
are a chosen-plaintext variant of the Boomerang attack. However, it contains
a probability of 2−2n because the intermediate state size is 2n bits. Thus, it is
unlikely that those attacks are applicable.

4 The ZIP Structure: Designing PRF in Light Work

Respecting the discussions in Sect. 3, we introduce the ZIP structure, which is
defined as follows:

Definition 2 (ZIP structure). Let E = E1 ◦ E0 be a secure iterative block
cipher. We define the ZIP construction of E as the following family of functions
E0 ⊕ E−1

1 : Fn
2 → Fn

2 . We suppose E0 and E1 contain almost the same rounds.

The ZIP structure has three advantages:

– We can inherit many cryptanalysis results against E.
– Since the resulting primitive is a pseudo-random function, it derives beyond-

birthday security in some modes of operation.
– On performance, the latency is about half of the original block cipher.

Of course, the discussion in Sect. 3 never shows that the ZIP structure has
the same security as the original block cipher against all attack strategies. In
particular, algebraic (integral), differential-linear, and truncated differential have
to be carefully analyzed, but it is not as hard work as designing it from scratch.

In a practical application, the ZIP structure can achieve beyond-birthday
security in some modes of operation while keeping the throughput in the case
we use the original block cipher. It is useful in a wide situation. Moreover, its half
latency is promising in several practical applications such as memory encryption
or communication over the 5G and the beyond 5G as discussed in [1].

In this section, we focus on the ZIP-AES as an example.

22 A. Flórez-Gutiérrez et al.

4.1 ZIP-AES: A Concrete Instantiation via AES-128

AES-128. The Advanced Encryption Standard [21] is a SPN scheme designed
by Daemen and Rijmen, and based on the Wide-Trail design strategy [19, 20].
Focusing on AES-128, the key size is of 128 bits, and the number of rounds is
10. Each AES-round RAES : F4×4

28 → F4×4
28 applies three operations besides the

key-additon to the state x, that is, x 7→ RAES(x) := MC ◦ SR ◦ SB(x). An
additional AddRoundKey operation is applied at the input of the first round,
and the last MixColumns operation is omitted (we denote a round without MC
as R̂AES). We refer to [21] for the details of the key-schedule.

The ZIP-AES PRF. We define the ZIP-AES as

∀x ∈ F4×4
28 : ZIP-AES5(x) := AES5(x)⊕AES−1

5 (x) ,

where AES5 denotes 5 encryption rounds of AES-128

AES5(·) = AK ◦MC ◦ SR ◦ SB︸ ︷︷ ︸
RAES

◦ · · · ◦AK ◦MC ◦ SR ◦ SB︸ ︷︷ ︸
RAES

◦AK(·)

including the final MC in the last round as well, and where AES−1
5 denotes 5

decryption rounds of AES-128

AES−1
5 (·) = AK−1 ◦ (MC ◦ SR ◦ SB)−1︸ ︷︷ ︸

R−1
AES

◦AK−1 ◦ . . . ◦ (MC ◦ SR ◦ SB)−1︸ ︷︷ ︸
R−1

AES

◦AK−1(·)

where (MC ◦ SR ◦ SB)−1(·) := SB−1 ◦ SR−1 ◦ MC−1(·), and including the
initial MC−1 in the first round as well.

Regarding the sub-keys, let k0 = k, k1, k2, . . . , k10 ∈ F4×4
28 be the sub-keys

generated by the key-schedule of AES-128, where k ∈ F4×4
28 is the whitening key.

– AES5 is instantiated with k0, k1, k2, k3, k4, k5;
– AES−1

5 is instantiated with k6, k7, k8, k9, k10, 0
128.

We claim that ZIP-AES is a 128-bit secure pseudo-random function.

Design Rationale and Modified Versions of ZIP-AES. Before going on, we briefly
discuss some technical choices regarding ZIP-AES, with particular attention both
at the MixColumns operation at the end of AES5, and at the inverse MixColumns
operation at the beginning of AES−1

5 . As we pointed out, the final MC operation
is omitted in AES. However, we decided to keep it for ZIP-AES.

This choice is necessary considering our motivation: ZIP-AES shares many
cryptanalysis results to the original AES. As mentioned in Sect. 3, P ⊕ Q and
Q ◦ P−1 shares the same differential characteristic, and P ⊕ Q and Q−1 ◦ P
shares the same linear trail. If there is no inverse MixColumns in the beginning
of AES−1

5 , the inverse MixColumns is missing between Q and P−1 in Q ◦ P−1.
Similarly, if there is no MixColumns in the last of AES5, the MixColumns is

General Practical Cryptanalysis 23

missing between Q−1 and P in Q−1 ◦ P . In other words, such a construction
corresponds to the variant of AES, where the MixColumns is omitted in the 5th
round, which is clearly more insecure than the AES.

In practice, in order to prove this fact, we consider these variants of ZIP-AES,
in which the final MC operation for AES and/or the initial MC−1 operation for
AES−1 are omitted in the full version [28]. In there, we show that these modified
versions are (much) weaker against attacks such as truncated differentials and
mixture differentials with respect to the ZIP-AES defined here.

4.2 Security Analysis of ZIP-AES

In this section, we present our security analysis of ZIP-AES. Our results show
that the strongest attack against it is the integral attack, which can distinguish
up to 4 + 4 rounds (namely, ZIP-AES4,4) from a PRF. All other attacks (in-
cluding classical linear and differential attacks, truncated differentials, mixture
differentials, and so on) can only cover a smaller number of rounds. Moreover, in
the full version [28], we also show that the attacks against AES-PRF1,r and AES-
PRF2,r for any r ≥ 1 proposed in [48] work against ZIP-AES1,r and ZIP-AES2,r
as well.

Unbalanced Variants. For the follow-up, we introduce “reduced-round variants”
of ZIP-AES defined as ZIP-AESr0,r1(x) := AESr0(x)⊕AES−1

r1 (x) . We encourage
to analyze its security with particular attention to the case r0 = r1 ≥ 2, in order
to better evaluate ZIP-AES’s resistance against attacks.

Differential and Linear Attacks. In the case of differential cryptanalysis, we
have seen in Prop. 1 that, given two independent keyed permutations P,Q, then
for each differential characteristic (trail) with probability p traversing P ⊕ Q,
there is a differential characteristic with the same probability p traversing Q ◦
P−1. Due to the wide-trail design strategy, it is well known that any differential
characteristic over 4-round AES has a probability of at least 2−150. This means
that ZIP-AES2,2 does not admit any differential characteristic with probability
lower than 2−150. Based on this, we claim that ZIP-AES5,5 is secure against
differential distinguishers and key-recovery attacks.

We have an analogous argument for linear cryptanalysis, differential-and-
linear key recovery, and the 2nd order differential attacks.

Differential-Linear Attacks. The differential-linear distinguisher (autocorre-
lation) is estimated as the product of each branch’s autocorrelation. In [35], the
authors evaluated the autocorrelation of the AES. They are 1, 2−7.66, 2−31.66,
and 2−55.66, for 2, 3, 4, and 5 rounds, respectively. Although there are no ref-
erences in the AES inverse, we expect the autocorrelations to be similar, con-
sidering the well-aligned structure of the AES. Then, the autocorrelation of
ZIP-AES5,5 is expected as 2−55.66×2, which is unlikely to be observed with 2128,
full code-book, queries. In practice, the input difference and output mask must

24 A. Flórez-Gutiérrez et al.

be the same in both branches. Such a restriction does not allow us to use the
optimal autocorrelation for both branches simultaneously. We verified this ob-
servation by using ZIP-AES3,3. When we used the 3-round differential-linear
distinguisher shown in [35] in the left branch, we could not observe a significant
autocorrelation in the right branch. Therefore, we expect that the autocorrela-
tion is worse than the squared value of the best autocorrelation of each branch.
In detail, see the full version [28].

Integral Attacks. Following [32], we introduce the following subspaces of F4×4
28 :

the diagonal subspace Di, in which the i-th diagonal for i ∈ {0, 1, 2, 3} is active
and all the others are constant; the column subspace Ci := SR(Di), in which
the i-th column for i ∈ {0, 1, 2, 3} is active and all the others are constant; the
anti-diagonal subspace IDi := SR(Ci), in which the i-th anti/inverse diagonal
for i ∈ {0, 1, 2, 3} is active and all the others are constant; the mixed subspace
Mi := MC(IDi).

As it is well known [27,29,42], the following integral attacks hold⊕
x∈Di⊕α

AES4(x) =
⊕

x∈Mi⊕β

AES−1
4 (x) = 0

for each i ∈ {0, 1, 2, 3} and for any α, β ∈ F4×4
28 . It follows that for each i, j ∈

{0, 1, 2, 3}: ⊕
x∈(Di⊕Mj)⊕α

ZIP-AES4,4(x) = 0

for each α ∈ F4×4
28 , where dim(Di ⊕ Mj) = 8 – the dimension is considered

at byte level. Therefore, we have the integral distinguisher by using 264 chosen
plaintexts.

Since no other integral distinguisher is known for 5 or more rounds of AES,
and since appending a key recovery to the plaintext side is not easy (see Sect. 3
for more details), we claim that ZIP-AES5,5 is secure against integral attacks.

Truncated Differential and Subspace Trail Attacks. With respect to the
previous attacks and distinguishers, truncated differential requires a more ded-
icated analysis, since it is not possible to reduce the security of F := P ⊕ Q to
the one of any sequential construction (see Sect. 3.5 for more details).

We first re-call some results regarding the subspace trails presented in [32].
Given DI :=

⊕
i∈I Di, CI :=

⊕
i∈I Ci, IDI :=

⊕
i∈I IDi, MI :=

⊕
i∈I Mi for

each I ⊆ {0, 1, 2, 3}, we have that

– Di,i+2 = IDi,i+2 for each i ∈ {0, 1, 2, 3},
– for each I, J ⊆ {0, 1, 2, 3}: dim(CI ∩MJ) = dim(CI ∩ DJ) = |I| · |J |,
– for each I, J ⊆ {0, 1, 2, 3} with |I|+ |J | ≤ 4: DI ∩MJ = IDI ∩MJ = ∅,

where |I| and |J | represent the cardinality of I and J respectively.

General Practical Cryptanalysis 25

Table 1: Practical tests on ZIP-AES over F4×4
28 . In the table, we assume |I| =

|I ′| = 3 and |J | = 2 (P ≡ Practical – Prob. ≡ Probability).

Rounds Input Subspace Output Subspace ZIP-AES P-Prob. PRF Prob.

1 + 1 Ci Di ∩Mi 1 2−64

2 + 2 Ci CI 2−32 + 2−52.8 2−32

2 + 2 MJ ∩ DI CI′ 2−32 + 2−53.7 2−32

Let AESr(·) be r rounds of AES. For each x ∈ F4×4
28 , and for each I, J ⊆

{0, 1, 2, 3}, the following truncated differentials hold:

Prob(AES1(x)⊕AES1(x⊕ δ) ∈ CI | δ ∈ DI) = 1 ,

Prob(AES1(x)⊕AES1(x⊕ δ) ∈ MI | δ ∈ CI) = 1 ,

Prob(AES2(x)⊕AES2(x⊕ δ) ∈ MI | δ ∈ DI) = 1 ,

Prob(AES3(x)⊕AES3(x⊕ δ) ∈ MJ | δ ∈ DI) = 28·|I|·(|J|−4) .

We refer to [6, 31] for truncated differentials up to 6-round AES.

Truncated Differentials for ZIP-AES1,1. Since Prob(AES1(x) ⊕ AES1(x ⊕ δ) ∈
Mi | δ ∈ Ci) = Prob(AES−1

1 (x)⊕AES−1
1 (x⊕ δ) ∈ Di | δ ∈ Ci) = 1, the following

truncated differentials on ZIP-AES1,1 holds:

Prob(ZIP-AES1,1(x)⊕ ZIP-AES1,1(x⊕ δ) ∈ Di ⊕Mi | δ ∈ Ci) = 1 .

For comparison, note that Prob(Π(x) ⊕Π(x ⊕ δ) ∈ Di ⊕Mi | δ ∈ Ci) = 2−64

for a PRF Π over F4×4
28 .

Truncated Differentials for ZIP-AES2,2: a Negative Result. Due to the exis-
tence of probability-1 truncated differentials for both 2-round AES and 2-round
AES−1, corresponding to R2(DI ⊕α) = MI ⊕ β and R−2(MJ ⊕α′) = DJ ⊕ β′,
it could seem natural to combine them in order to set up a truncated differential
for ZIP-AES2,2, defined via an initial subspace DI ∩ MJ and a final subspace
MI ⊕DJ . However, a problem arises, since

– DI ∩MJ contains only the zero-element for each I, J with |I|+ |J | ≤ 4, and
– DJ ⊕MI is the full space F4×4

28 for each I, J with |I|+ |J | ≥ 4,

due to the results listed before. For this reason, it seems impossible to set up a
probability-1 truncated differential for ZIP-AES2,2 via this strategy.

Truncated Differentials for ZIP-AESr,r with r ≥ 2: Practical Results. At the
same time, probabilistic truncated differential distinguishers for ZIP-AESr,r with
r ≥ 2 exist. Our practical results for ZIP-AES is summarized in Table 1.4 As it is

4 The truncated differentials are not affected by the details (as the degree) of the S-
Box. Hence, we also provide practical results for small-scale ZIP-AES (that is, AES
over F4×4

24
as presented in [18]) in the full version [28].

26 A. Flórez-Gutiérrez et al.

possible to observe, for all the considered cases, the probability that a truncated
differential distinguisher holds for ZIP-AESr,r with r ∈ {2, 3} is only slightly
higher than the corresponding probability for a generic PRF.

Conclusion. Based on our practical tests, we conjecture that if a bias between
the probability for ZIP-AESr,r for r ≥ 4 and a generic PRF exists, it would be
too small for being useful in practice. Together with the fact that extending a
distinguisher that ends with CI with |I| ≥ 2 by 1 round is not possible, we claim
that ZIP-AES5,5 is secure against truncated differential distinguishers.

Mixture Differential Attacks (and More). A powerful attack on round-
reduced AES is the mixture differential cryptanalysis [30]. Given two plaintexts
p0, p1 in the same column space CI⊕γ ⊆ F4×4

28 , let p′0, p
′
1 ∈ CI⊕γ be two new texts

obtained by carefully swapping the generating variables of p0, p1. Independently
of the values of the round-keys, the difference between p0 and p1 after 2-round
AES is equal to the corresponding difference of p′0 p′1, that is,

AES2(p0)⊕AES2(p1) = AES2(p
′
0)⊕AES2(p

′
1) . (1)

This is also known as the integral mixture distinguisher [33]. Moreover, p0 and
p1 belong to the same coset of a mixed space MJ after 4-round AES if and only
if p0 and p1 satisfy the same property, that is, ∀J ⊆ {0, 1, 2, 3}:

AES4(p0)⊕AES4(p1) ∈ MJ ⇐⇒ AES4(p
′
0)⊕AES4(p

′
1) ∈ MJ .

Similar distinguishers hold in the backward direction. (A variant of such distin-
guisher – the exchange attack [6] – is discussed in the full version [28]).

(Deterministic) Mixture Integral Distinguishers for ZIP-AES2,2: a Negative Re-
sult. At the current state, it does not seem possible to set up an integral mixture
distinguisher for ZIP-AES2,2, that is,

ZIP-AES2,2(p0)⊕ ZIP-AES2,2(p1) ̸= ZIP-AES2,2(p
′
0)⊕ ZIP-AES2,2(p

′
1)

in general, where p0, p1, p
′
0, p

′
1 ∈ CI ⊕ γ for I ⊆ {0, 1, 2, 3}, and where p′0 and p′1

are constructed by carefully swapping the generating variables of p0, p1 in the
same way described in [30]. The problem arises from the fact that generating
variables of p0, p1 and the ones of MC−1(p0),MC−1(p1) are different.

(Probabilistic) Mixture Differential Distinguishers for ZIP-AES2,2. Having said
that, it is possible to set up a probabilistic mixture differential distinguisher for
ZIP-AES2,2 by exploiting the following result.

Lemma 1. Let p0, p1 ∈ Ci ⊕ α. Let p′0, p
′
1 ∈ Ci ⊕ α be defined as the mixture

couples generated by p0 and p1 such that Eq. (1) holds. For any I ⊆ {0, 1, 2, 3}
with |I| = 3:

Prob
(
ZIP-AES2,2(p0)⊕ ZIP-AES2,2(p1)

⊕ ZIP-AES2,2(p
′
0)⊕ ZIP-AES2,2(p

′
1) ∈ DI

)
≥ 2−16 .

General Practical Cryptanalysis 27

Table 2: Performance comparison on the counter mode.

cycle-per-byte counter
16B 32B 256B 2KB 16KB 128KB

AES 3.56 1.84 0.51 0.36 0.34 0.34 integer
AES-PRF 3.63 1.94 0.55 0.39 0.37 0.37 integer
ZIP-AES 2.96 1.58 0.53 0.41 0.39 0.39 integer

AES 3.53 1.81 0.47 0.35 0.34 0.33 gray code
AES-PRF 3.57 1.88 0.51 0.36 0.34 0.34 gray code
ZIP-AES 2.90 1.61 0.47 0.34 0.33 0.33 gray code

For comparison, Prob (Π(p0)⊕Π(p1)⊕Π(p′0)⊕Π(p′1) ∈ DI) = 2−32 for a PRF
Π over F4×4

28 .

See the full version [28] for the proof of Lemma 1.

At the current state, it does not seem possible to extend the previous dis-
tinguisher for more rounds of ZIP-AES. For this reason, we conjecture that
ZIP-AES5,5 is secure against such an attack.

4.3 Performance Evaluation

We implemented the counter mode of ZIP-AES to measure the performance.
For the comparison, we also implemented the counter modes of AES-128 and
AES-PRF-128 [48]. All measurements were taken on a single core of Intel Core
i7-1185G7 (Tiger Lake) with Turbo Boost and Hyperthreading disabled, and
averaged over 100000× 4096

byte repetitions, where byte denotes the processing data
size in bytes. All subkeys are pre-computed, and the process is measured when
the IV and plaintext are given in a byte array. The counter mode uses the 64-bit
IV and 64-bit counter for the top and bottom halves of the input, respectively.

Table 2 (top 3 rows) summarizes the cycle-per-byte of each cipher for each
size of processing message. As expected, ZIP-AES performs better than AES
and AES-PRF for small data because the latency for one block processing is
lower. On the other hand, when we encrypt more than 2KB, ZIP-AES performs
worse than AES and AES-PRF. The reason is that AESDEC performs AK−1 ◦
MC−1◦SR−1◦SB−1 and is not the straightforward AES inverse round function.
AES-NI consists of six instructions:

– AESENC performs AK ◦MC ◦ SR ◦ SB.

– AESENCLAST performs AK ◦ SR ◦ SB.

– AESDEC performs AK−1 ◦MC−1 ◦ SR−1 ◦ SB−1.

– AESDECLAST performs AK−1 ◦ SR−1 ◦ SB−1.

– AESIMC performs MC−1. It is prepared to prepare subkeys for decryption.

– AESKEYGENASSIST assists to create round keys.

28 A. Flórez-Gutiérrez et al.

To perform AES−1
5 , we first use AESIMC and then use AESDEC. Unfortunately,

AESIMC of the AES-NI is worse than the other main instructions. For example,
on Tiger Lake CPU, the latency and throughput of the main four instructions
are 3 and 0.5, respectively, but the latency and throughput of AESIMC are 6 and
1, respectively. The overhead by AESIMC is not negligible for long data.

To solve the overhead issue, we replace an integer counter with a gray code
counter. In the gray code, the counting up is implemented by one XOR with a
counter-dependent value. Notably, the counting up and MC−1 (and the whiten-
ing key XORing) is commutative. Given the IV, we first prepare the counter for
AES5 and prepare the counter for AES−1

5 by applying MC−1. Then, we perform
each counting up independently by one XOR. Then, we can avoid AESIMC for
every block. Modern CPUs can perform XOR instructions in 3 ports, and the
XOR instruction is executed with the AES instruction in parallel. Therefore, the
overhead can be negligible. Table 2 (bottom 3 rows) summarizes each cycle-per-
byte, where the counter is implemented by the gray code. We notice that the
overhead of ZIP-AES for the long data can be resolved, and the performance is
competitive with the case of AES and AES-PRF.

5 Future Work: Other ZIP Ciphers and Modes

In addition to ZIP-AES, one can consider several ZIP ciphers. Although we did
not discuss it in this paper, we are interested in ZIP-AES-256; does it successfully
derive the 256-bit secure PRF? Another interesting instance is the ZIP cipher
using the 64-bit block cipher, e.g., ZIP-GIFT, instantiated by GIFT-64 [5].

GIFT-64 consists of 28 rounds. So, ZIP-GIFT consists of 14-round GIFT-
64 and 14-round inverse GIFT-64. Unlike ZIP-AES, we do not provide a de-
tailed analysis, and it is left as an open problem. As a reference, the following
is a related analysis for GIFT-64. For the integral attack, in [37], the integral
resistance property is guaranteed in 12-round GIFT-64, and the best integral
distinguisher is up to 10 rounds. Therefore, ZIP-GIFT also guarantees integral
resistance property. In [53], the autocorrelation is evaluated in GIFT-64, where
the squared autocorrelation is 2−57.22 in 12 rounds. Therefore, the autocorrela-
tion of ZIP-GIFT would be low enough.

Besides looking into more ZIP ciphers, it is promising to apply the gen-
eral practical cryptanalysis to other structures. In particular, the feed-forward
EDMD structure used in [47, 48] to construct AES-PRF is a natural candidate
to check which attack vectors link to AES and which do not. Another exam-
ple is the generalization of the sum of two permutations, i.e., a sum of several
permutations. There is already a concrete instance that has been designed, i.e.,
Gleeok [1] named after the multiple head dragon.

Finally, it is worth investigating if the new differential-and-linear attack that
we introduced and liked to a differential-linear attack on the composition, is
applicable to Orthros.

General Practical Cryptanalysis 29

Acknowledgements. The authors would like to thank anonymous reviewers
for their useful feedback in preparing the final version of this paper and Jan
Vorloeper for performing the practical tests regarding the truncated differential
on ZIP-AES.

This work has been funded in parts by the German Research foundation
(DFG) within the framework of the Excellence Strategy of the Federal Govern-
ment and the States – EXC 2092 CaSa – 39078197 and by the ERC project
101097056 (SYMTRUST).

References

1. Anand, R., Banik, S., Caforio, A., Ishikawa, T., Isobe, T., Liu, F., Minematsu, K.,
Rahman, M., Sakamoto, K.: Gleeok: A family of low-latency prfs and its applica-
tions to authenticated encryption. IACR TCHES 2024(2), 545–587 (2024)

2. Avanzi, R.: The QARMA block cipher family. almost MDS matrices over rings with
zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency s-boxes. IACR ToSC 2017(1),
4–44 (2017)

3. Avanzi, R., Banik, S., Dunkelman, O., Eichlseder, M., Ghosh, S., Nageler, M.,
Regazzoni, F.: The qarmav2 family of tweakable block ciphers. IACR ToSC
2023(3), 25–73 (2023)

4. Banik, S., Isobe, T., Liu, F., Minematsu, K., Sakamoto, K.: Orthros: A low-latency
PRF. IACR ToSC 2021(1), 37–77 (2021)

5. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A Small
Present - Towards Reaching the Limit of Lightweight Encryption. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer (2017)

6. Bardeh, N.G., Rønjom, S.: The Exchange Attack: How to Distinguish Six Rounds
of AES with 288.2 Chosen Plaintexts. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019, Part III. LNCS, vol. 11923, pp. 347–370. Springer (2019)

7. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS,
vol. 9815, pp. 123–153. Springer (2016)

8. Bellare, M., Impagliazzo, R.: A tool for obtaining tighter security analyses of pseu-
dorandom function based constructions, with applications to PRP to PRF conver-
sion. IACR Cryptol. ePrint Arch. p. 24 (1999)

9. Bellare, M., Krovetz, T., Rogaway, P.: Luby-rackoff backwards: Increasing security
by making block ciphers non-invertible. In: Nyberg, K. (ed.) EUROCRYPT ’98.
LNCS, vol. 1403, pp. 266–280. Springer (1998)

10. Biham, E., Biryukov, A., Dunkelman, O., Richardson, E., Shamir, A.: Initial ob-
servations on skipjack: Cryptanalysis of skipjack-3xor. In: Tavares, S.E., Meijer,
H. (eds.) SAC’98. LNCS, vol. 1556, pp. 362–376. Springer (1998)

11. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT ’99. LNCS,
vol. 1592, pp. 12–23. Springer (1999)

12. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack - rectangling the ser-
pent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357.
Springer (2001)

30 A. Flórez-Gutiérrez et al.

13. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO ’90. LNCS, vol. 537, pp. 2–21.
Springer (1990)

14. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and multidimensional
linear distinguishers with correlation zero. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer (2012)

15. Bogdanov, A., Rijmen, V.: Linear hulls with correlation zero and linear cryptanal-
ysis of block ciphers. Des. Codes Cryptogr. 70(3), 369–383 (2014)

16. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE - A low-latency block cipher for pervasive computing
applications (full version). IACR Cryptol. ePrint Arch. p. 529 (2012)

17. Bozilov, D., Eichlseder, M., Knezevic, M., Lambin, B., Leander, G., Moos, T.,
Nikov, V., Rasoolzadeh, S., Todo, Y., Wiemer, F.: Princev2 - more security for
(almost) no overhead. In: Dunkelman, O., Jr., M.J.J., O’Flynn, C. (eds.) SAC
2020. LNCS, vol. 12804, pp. 483–511. Springer (2020)

18. Cid, C., Murphy, S., Robshaw, M.J.B.: Small Scale Variants of the AES. In: Gilbert,
H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 145–162. Springer (2005)

19. Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Honary, B. (ed.) 8th
IMA. LNCS, vol. 2260, pp. 222–238. Springer (2001)

20. Daemen, J., Rijmen, V.: Security of a Wide Trail Design. In: Menezes, A., Sarkar,
P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 1–11. Springer (2002)

21. Daemen, J., Rijmen, V.: The Design of Rijndael - The Advanced Encryption Stan-
dard (AES), Second Edition. Information Security and Cryptography, Springer
(2020)

22. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In: Ny-
berg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer (2008)

23. Diffie, W., Hellman, M.E.: Exhaustive cryptanalysis of the NBS data encryption
standard. Computer 10(6), 74–84 (1977)

24. Dinur, I.: Tight indistinguishability bounds for the XOR of independent random
permutations by fourier analysis. In: Joye, M., Leander, G. (eds.) EUROCRYPT
2024, Part I. LNCS, vol. 14651, pp. 33–62. Springer (2024)

25. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer (2009)

26. Dutta, A., Nandi, M., Saha, A.: Proof of mirror theory for ξmax = 2. IEEE Trans.
Inf. Theory 68(9), 6218–6232 (2022)

27. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D.A., Whiting,
D.: Improved Cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer (2000)

28. Flórez-Gutiérrez, A., Grassi, L., Leander, G., Sibleyras, F., Todo, Y.: General prac-
tical cryptanalysis of the sum of round-reduced block ciphers and zip-aes, full ver-
sion of this paper

29. Gilbert, H.: A Simplified Representation of AES. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 200–222. Springer (2014)

30. Grassi, L.: Mixture Differential Cryptanalysis: a New Approach to Distinguishers
and Attacks on round-reduced AES. IACR ToSC 2018(2), 133–160 (2018)

31. Grassi, L., Rechberger, C.: Truncated Differential Properties of the Diagonal Set
of Inputs for 5-Round AES. In: Nguyen, K., Yang, G., Guo, F., Susilo, W. (eds.)
ACISP 2022. LNCS, vol. 13494, pp. 24–45. Springer (2022)

32. Grassi, L., Rechberger, C., Rønjom, S.: Subspace Trail Cryptanalysis and its Ap-
plications to AES. IACR ToSC 2016(2), 192–225 (2016)

General Practical Cryptanalysis 31

33. Grassi, L., Schofnegger, M.: Mixture Integral Attacks on Reduced-Round AES
with a Known/Secret S-Box. In: Bhargavan, K., Oswald, E., Prabhakaran, M.
(eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp. 312–331. Springer (2020)

34. Gunsing, A., Bhaumik, R., Jha, A., Mennink, B., Shen, Y.: Revisiting the indiffer-
entiability of the sum of permutations. In: Handschuh, H., Lysyanskaya, A. (eds.)
CRYPTO 2023, Part III. LNCS, vol. 14083, pp. 628–660. Springer (2023)

35. Hadipour, H., Derbez, P., Eichlseder, M.: Revisiting differential-linear attacks via
a boomerang perspective with application to aes, ascon, clefia, skinny, present,
knot, twine, warp, lblock, simeck, and SERPENT. In: Reyzin, L., Stebila, D. (eds.)
CRYPTO 2024, Part IV. LNCS, vol. 14923, pp. 38–72. Springer (2024)

36. Hebborn, P., Lambin, B., Leander, G., Todo, Y.: Lower bounds on the degree of
block ciphers. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part I. LNCS,
vol. 12491, pp. 537–566. Springer (2020)

37. Hebborn, P., Lambin, B., Leander, G., Todo, Y.: Strong and tight security guaran-
tees against integral distinguishers. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT
2021, Part I. LNCS, vol. 13090, pp. 362–391. Springer (2021)

38. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015,
Part I. LNCS, vol. 9056, pp. 15–44. Springer (2015)

39. Jha, A., Nandi, M.: A survey on applications of h-technique: Revisiting security
analysis of PRP and PRF. Entropy 24(4), 462 (2022)

40. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-
round MARS and serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp.
75–93. Springer (2000)

41. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
2nd. LNCS, vol. 1008, pp. 196–211. Springer (1994)

42. Knudsen, L.R., Rijmen, V.: Known-Key Distinguishers for Some Block Ciphers.
In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer
(2007)

43. Leander, G., Moos, T., Moradi, A., Rasoolzadeh, S.: The SPEEDY family of block
ciphers engineering an ultra low-latency cipher from gate level for secure processor
architectures. IACR TCHES 2021(4), 510–545 (2021)

44. Li, M., Sun, L., Wang, M.: Automated key recovery attacks on round-reduced
orthros. In: Batina, L., Daemen, J. (eds.) AFRICACRYPT 2022. LNCS, vol. 13503,
pp. 189–213. Springer Nature Switzerland (2022)

45. Lucks, S.: The sum of prps is a secure PRF. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 470–484. Springer (2000)

46. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT ’93. LNCS, vol. 765, pp. 386–397. Springer (1993)

47. Mennink, B., Neves, S.: Encrypted davies-meyer and its dual: Towards optimal
security using mirror theory. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part
III. LNCS, vol. 10403, pp. 556–583. Springer (2017)

48. Mennink, B., Neves, S.: Optimal PRFs from Blockcipher Designs. IACR ToSC
2017(3), 228–252 (2017)

49. Patarin, J.: Introduction to mirror theory: Analysis of systems of linear equalities
and linear non equalities for cryptography. IACR Cryptol. ePrint Arch. p. 287
(2010)

50. Sun, B., Liu, Z., Rijmen, V., Li, R., Cheng, L., Wang, Q., AlKhzaimi, H., Li, C.:
Links among impossible differential, integral and zero correlation linear cryptanal-
ysis. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215,
pp. 95–115. Springer (2015)

32 A. Flórez-Gutiérrez et al.

51. Taka, K., Ishikawa, T., Sakamoto, K., Isobe, T.: An efficient strategy to construct
a better differential on multiple-branch-based designs: Application to orthros. In:
Rosulek, M. (ed.) CT-RSA 2023. LNCS, vol. 13871, pp. 277–304. Springer (2023)

52. Wagner, D.A.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE ’99. LNCS,
vol. 1636, pp. 156–170. Springer (1999)

53. Wang, S., Liu, M., Hou, S., Lin, D.: Differential-linear cryptanalysis of GIFT family
and GIFT-based ciphers. IACR Communications in Cryptology 1(1) (2024)

	General Practical Cryptanalysis of the Sum of Round-Reduced Block Ciphers and ZIP-AES
	Introduction
	Preliminaries
	Known Attacks on Symmetric Primitives
	The Sum-of-PRPs

	General Practical Cryptanalysis of P Q
	Differential Cryptanalysis
	Linear Cryptanalysis
	Differential-Linear Cryptanalysis
	Differential-and-Linear Key-Recovery Attack
	Truncated Differential Cryptanalysis
	Algebraic and Integral Attacks
	Second-Order Differential Cryptanalysis
	Meet-in-the-middle Attacks
	Summary and Other Attacks

	The ZIP Structure: Designing PRF in Light Work
	ZIP-AES: A Concrete Instantiation via AES-128
	Security Analysis of ZIP-AES
	Performance Evaluation

	Future Work: Other ZIP Ciphers and Modes

