
EUROCRYPT ’25 Artifact Appendix: Snake-eye Resistant PKE from
LWE for Oblivious Message Retrieval and Robust Encryption

Zeyu Liu
Yale University

Katerina Sotiraki
Yale University

Eran Tromer
Boston University

Yunhao Wang
Yale University

A Artifact Evaluation

A.1 Abstract
Our artifact is a C++ library implementing the constructions
DoS-PerfOMR in [1]. The source code is public on github
under ObliviousMesageRetrievel repo. Our main claims pro-
duced from this artifact are the detector runtime of the con-
struction in Table 1 and Table 2.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Our artifact should not incur any risk to the evaluators regard
of the machines security, data privacy or ethical concerns.
The payload we use to simulate the public data published on
the bulletin board is drawn from random distributions. Note
that we are using an old version of OpenSSL, but it does
not require the root privilege and should only be built in the
directory specified by the evaluator. Despite all these, we still
recommend the evaluators open a fresh GCP instance without
testing our code using their own machines.

A.2.2 Hardware dependencies

Our main benchmarks should be able to be reproduced on a
normal Google Compute Cloud n4-standard-8 instance type
(4 hyperthreads of an Intel Xeon 3.10 GHz CPU with 32GB
RAM),

A.2.3 Software dependencies

On a Google Compute Cloud n4-standard-8 instance, we run
the benchmarks with boot disk configured with Ubuntu 20.04
LTS operating system and a 128GB disk. Notice that the disk
memory is used to store the large database our experiments
run against.

We also rely on the following softwares and libraries:

• C++ build environment and cmake build infrastructure

• SEAL library 4.1 and all its dependencies Notice that we
made some manual change on SEAL interfaces to facili-
tate our implementation and thus a built-in dependency
of SEAL is directly included under ’build’ directory.

• PALISADE library release v1.11.2 and all its dependen-
cies, as v1.11.2 is not publicly available anymore when
this repository is made public, we use v1.11.3 in the
instructions instead.

• NTL library 11.4.3 and all its dependencies

• OpenSSL library on branch OpenSSL_1_1_1-stable We
use an old version of OpenSSL library for plain AES
function without the complex EVP abstraction.

A detailed installation script is provided in the
README.md file in our artifact. the datasets we use
are simulated directly when running the experiements and
thus no third-party models/datasets are used.

A.2.4 Benchmarks

We benchmark the main scheme DoS-PerfOMR (Section 7.5).
We choose the number of messages to be N = 219,221,223,
and let the total number of pertinent messages (and the bound
estimated by the recipient) be γ = γ̄ = 50,100,150.

A.3 Set-up
The instructions below are also documented in the README
file of our source code submitted.

A.3.1 Installation

If permission required, please add sudo
before the commands as needed

sudo apt-get update && sudo apt-get install
build-essential # if needed
sudo apt-get install autoconf # if no autoconf
sudo apt-get install cmake # if no cmake
sudo apt-get install libgmp3-dev # if no gmp
sudo apt-get install libntl-dev # if no ntl
sudo apt-get install unzip # if no unzip

If you have the snake_eye_code.zip directly,
put it under ~/OMR and unzip it into
ObliviousMessageRetrieval dir, otherwise
clone the tag:

https://github.com/ObliviousMessageRetrieval/ObliviousMessageRetrieval/tree/580a91aa730e74d016b990518223885aa33712f4

Detector Runtime
(ms/msg)

Clue Key
Size (KB)

Clue Size
(bytes)

Detector Key
Size (MB)

Digest Size
(bytes/msg)

Recipient
Runtime (ms) DoS-resistance

DoS-PerfOMR
[1, Section 7.5]

1-thread: 4.9
2-thread: 2.6 4.73 1996 183 2.71 20 Yes ([1, Thm 5.3])

Table 1: Our result N = 219,γ = γ̄ = 50 (as shown in our full version [1]).

γ = γ̄ = 50

N
Amortized runtime

(ms/msg)
Total runtime

(s)
Amortized digest
size (bytes/msg)

Total digest
size (MB)

DoS-PerfOMR
219

4.95
2597.53 2.71 1.35

221 10663.81 0.81 1.70
223 42467.92 0.20 1.70

N = 219

γ = γ̄
Amortized runtime

(ms/msg)
Total runtime

(s)
Amortized digest
size (bytes/msg)

Total digest
size (MB)

DoS-PerfOMR
50 4.95 2597.53 2.71 1.35

100 5.44 2850.74 4.87 2.43
150 5.83 3067.73 7.04 3.52

Table 2: Scalability of our construction DoS-PerfOMR.

mkdir -p ~/OMR
cd ~/OMR
git clone --branch ec25_artifact
--single-branch https://github.com/Oblivious
MessageRetrieval/ObliviousMessageRetrieval.git

unzip snake_eye_code.zip

change build_path to where you want the
dependency libraries installed
OMRDIR=~/OMR
BUILDDIR=$OMRDIR/ObliviousMessageRetrieval/build

cd $OMRDIR && git clone -b v1.11.3
https://gitlab.com/palisade/palisade-release
cd palisade-release
mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=$BUILDDIR
make
make install

Old OpenSSL used for plain AES function
without EVP abstraction
cd $OMRDIR && git clone -b OpenSSL_1_1_1w
https://github.com/openssl/openssl
cd openssl
./config --prefix=$BUILDDIR
make

make install

a separate fork of SEAL library that
overwrite some private functions, used
in prior works
cd $OMRDIR && git clone
https://github.com/wyunhao/SEAL
cd SEAL
cmake -S . -B build -DCMAKE_INSTALL_PREFIX=$BUILDDIR
-DSEAL_USE_INTEL_HEXL=ON
cmake --build build
cmake --install build

Optional
Notice that although we ’enable’ hexl via
command line, it does not take much real
effect on GCP instances and thus does not
have much impact on our runtime
cd $OMRDIR && git clone --branch v1.2.3
https://github.com/intel/hexl
cd hexl
cmake -S . -B build -DCMAKE_INSTALL_PREFIX=$BUILDDIR
cmake --build build
cmake --install build

cd $OMRDIR/ObliviousMessageRetrieval/build
mkdir ../data
mkdir ../data/payloads
mkdir ../data/clues

cmake .. -DCMAKE_PREFIX_PATH=$BUILDDIR
make

A.3.2 Basic Test

The instruction to run a test on our construction is as follows:

./OMRdemos dos <number_of_cores>
<number_of_messages_in_bundle>
<number_of_bundles> <number_of_pert_msgs>

For example, a valid sanity test could be:

cd $BUILDDIR
./OMRdemos dos 1 2 32768 50

The expected output should look like this:

Preparing database and paramaters...
Pertient message indices: [3558 ... 32215]
/
| Encryption parameters :
| scheme: BFV
| poly_modulus_degree: 32768
| coeff_modulus size: ... bits
| plain_modulus: 65537
\
Database and parameters prepared.

Prepare switching key time: 254576131
ClueToPackedPV time: 175768918 us.
PVUnpack time: 148435548 us.
ExpandedPVToDigest time: 60941476 us.

Detector running time: 475043830us.
Digest size: 568087 bytes

Result is correct!

A.4 Evaluation workflow

A.4.1 Major Claims

Our benchmark claims are all in Table 1 and Table 2. The
major one to be reproduced is the detector runtime (note that
clue key, clue sizes and digest sizes can be calculated with
the parameters we wrote in our paper; the recipient runtime is
not optimized for), up to some testing variation. In particular,
the “detector runtime” column in Table 1 and the “amortized
runtime” in Table 2.

A.4.2 Experiments

Before executing any experimental scripts in this section,
we assume that one has finished the installation steps in Ap-
pendix A.3.1. The expected outcomes should be similar to
the one given under Appendix A.3.2.

Notice that the runtime of our experiments are quite long
(the main scheme takes most of the time, while the preparation
of the dataset also takes one to dozens of hours, depending
on how long the dataset is), we highly recommend one to
use screen command to detach all running scripts from the
current session and put it on the back-end, so that one is still
able to re-attach it after the current session times out (which
does happen a lot when running our experiments). We also
recommend one to initialize several fresh instances and run
those experiments in parallel.
(E1): Runtime of DoS-PerfOMR as in Table 1, which is also

our main claim in [1].
Execution:
./OMRdemos dos 1 8 65536 50
./OMRdemos dos 2 8 65536 50

Results: After seeing the detector running time (in
us) in the log, divide it by the number of transactions
(notice that the total number of transactions equals to
number_of_messages_in_bundle multiplied with num-
ber_of_bundles). For example, if by running script
./OMRdemos dos 1 8 65536 50 with log:
Detector running time: 2601415612 us, the
amortized runtime should be 2601415612/(65536 ∗
8) = 4961us= 4.96ms.

(E2): Runtime scaling with the number of transactions N:
the following run scripts aim to reproduce the detector
runtime stated in the top half of Table 2.
Execution:
./OMRdemos dos 1 8 65536 50
./OMRdemos dos 1 8 262144 50
./OMRdemos dos 1 8 1048576 50

Results: The total runtime of column 2 in Table 2 is
shown directly as the detector runtime in the log and the
amortized runtime (ms/msg) could be calculated simi-
larly as above.

(E3): Runtime scaling with the number of pertinent messages
γ̄: the following run scripts aim to reproduce the detector
runtime stated in the bottom half of Table 2.
Execution:
./OMRdemos dos 1 8 65536 50
./OMRdemos dos 1 8 65536 100
./OMRdemos dos 1 8 65536 150

Results: Same as above.

References

[1] Z. Liu, K. Sotiraki, E. Tromer, and Y. Wang. Snake-eye
resistant PKE from LWE for oblivious message retrieval
and robust encryption. Cryptology ePrint Archive, Pa-
per 2024/510, 2024. Full version of this paper. Version
2025/02/07.

	Artifact Evaluation
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

