
Documentation of the repository of the paper

”Reduction from sparse LPN to LPN, Dual

Attack 3.0”

June 6, 2024

Contents

1 Overview of the repository 1

2 Verification of the Poisson Model 2

3 Prediction of lattice score function 7

4 Verification of complexity claims 8

1 Overview of the repository

References to Proposition, Figure or Model point to the eprint version of the
article uploaded on December 4th:

https://eprint.iacr.org/archive/2023/1852/1701452846.pdf

Summary of each folder

• ”Verify Poisson Model”: A program to show that the poisson Model 1 is
valid, it reproduces a figure close to Figure 2. It contains in particular
parts of doubleRLPN implemented in C++. Documented in Section 2.

• ”Lattice Prediction”: A program to show that we can predict the dis-
tribution of the score function of dual attacks in lattices. It essentially
reproduces Figure 3 and Figure 4. Documented in Section 3.

• ”Complexity Claim”: A program to verify the complexity claims relative
to doubleRLPN. It contains in particular a dataset with the optimized
asymptotic parameters of doubleRLPN to decode at the relative Gilbert-
Varshamov distance. Documented in Section 4.

1

https://eprint.iacr.org/archive/2023/1852/1701452846.pdf

Dependencies

For ”Verify Poisson Model”

• gcc/g++, available at https://gcc.gnu.org. Tested with version 13.1
but an older version with support for C++20 should suffice.

For ”Verify Poisson Model” and ”Complexity Claim”

• python3, available at https://www.python.org/downloads/. Tested with
version 3.11.3. Modules needed:

– Python 3 standard Library

– NumPy (Tested with version 1.24.3)

– Scipy (Tested with version 1.10.1)

– Matplotlib (Tested with version 3.7.1)

For ”Lattice Prediction”

• Jupyter notebook, available at https://jupyter.org/. Tested with ver-
sion 6.5.4.

• SageMath, available at https://www.sagemath.org/. Tested with ver-
sion 10.0.

• unzip.

Everything was tested on a 64 bit Arch-Linux distribution.

Acknowledgement

We would like to warmly thank the anonymous reviewers of Eurocrypt 2024’s
artifacts whose comments allowed to greatly improve the quality of this artifact.

2 Verification of the Poisson Model

In folder

Verify_Poisson_Model/

The goal here is to verify the Poisson Model which is used to bound the expected
number of false candidates in Proposition 5, namely the quantity

E
(∣∣∣{x ∈ Fkaux

2 \ {ePGaux} : ̂f
y,H̃ ,Gaux

(x) ≥ T}
∣∣∣) .

The goal is to show that the expected number of false candidates is the same
experimentally and by supposing that the Poisson Model is true.

2

https://gcc.gnu.org
https://www.python.org/downloads/
https://jupyter.org/
https://www.sagemath.org/

Remark : This section does not exactly reproduce Figure 2 of the article. The
latter was generated in the case where the set H of LPN samples is a random

subset of H̃ of size N . While here we focus on the framework of Proposition 5,

that is when H = H̃ , which is much simpler and shows in the same manner
that the Poisson Model is valid.

Overview of the folder

• ”plot.py”: The main script. Plot the number of false candidates given by
doubleRLPN against the number of false candidates given by the Poisson
Model. This script uses scripts (that can be run independently) contained
in the following two folders.

• ”doubleRLPN”: contains parts of doubleRLPN implemented in C++. Al-
low to compute the expected number of false candidates in doubleRLPN.
Documented in Section 2.1.

• ”Poisson Model”: computes the expected number of false candidates un-
der the Poisson Model. Documented in Section 2.2.

How to run and what is does

-python3 plot.py [--options] w taux kaux s k n t Niter

Options:

• --d1. Create a dataset containing the expected number of false candidates
given experimentally by doubleRLPN. More specifically, it runs the script
documented in Section 2.1 with the same parameters.

• --d2. Create a dataset containing the expected number of false candi-
dates given by the Poisson Model. More specifically, it runs the script
documented in Section 2.2 with the same parameters.

• --plot. Combine the two previous datasets into a plot. This option must
be either combined with option d1 and d2 if the corresponding datasets
do not already exist, or can be used alone if the datasets already exist.

Alternatively, the script can be run without options which is equivalent to run
it with --d1, --d2 and --plot all together.
Example:

-python3 plot.py 5 2 20 28 30 60 8 100

which is equivalent to running

-python3 plot.py --d1 --d2 --plot 5 2 20 28 30 60 8 100

Executing this command can take a few hours.

3

Typical output

An image in

plot/plot_w_taux_kaux_s_k_n_Niter.pdf

Example with

plot/plot_5_2_20_28_30_60_8_100.pdf

The limit on the T axis of the plot is set to T such that the number of false
candidates is equal to 500

Niter
, this prevents the two curve from diverging from

each other due to lack of data. Consider increasing Niter to get information for
larger T ’s. Niter is advised to be more than 1000.

0 1000 2000 3000 4000 5000 6000
T

23

25

27

29

211

213

215

217

219

(| {
x

k a
ux

2
\{

e P
G

au
x}

:f
(x

)
T}

|)

doubleRLPN
Poisson Model

2.1 Number of false candidates in doubleRLPN

In folder

Verify_Poisson_Model/doubleRLPN/

What it does

Gives an empirical value for the expected number of false candidates in each
iteration of doubleRLPN for different values of threshold T . More precisely:
given the parameters of the algorithm w, taux, kaux, s, k, n, t and Niter it runs a
number Niter of times the following procedure:

4

• Do:

– Take C and Caux uniformly at random in [n, k] and [s, kaux] respec-
tively by choosing two generator matrices G and Gaux uniformly at
random among matrices of Fk×n

2 of rank k and matrices of Fkaux×s
2 of

rank kaux. Compute y = c+ e where c and e are taken uniformly at
random in C and {x ∈ Fn

2 : |x| = t} respectively. Choose uniformly
at random two complementary subsets of J1, nK, P and N of size s
and n− s respectively.

While CP is not of dimension s.

• Compute the set of false candidates

{x ∈ Fkaux
2 \ {ePGaux} : ̂f

y,H̃ ,Gaux
(x) ≥ T}

where for x ∈ Fkaux
2 ,

̂f
y,H̃ ,Gaux

(x) =
∑

(h,maux)∈H̃

(−1)⟨y,h⟩−⟨x,maux⟩

and

H̃ = {(h,maux) ∈ C⊥ × Caux : |hN | = w and |hP +mauxGaux| = taux}.

It outputs a file containing, for different values of T , the experimental average
(computed over the Niter iterations) number of false candidates.

How to run

-python3 doubleRLPN.py w taux kaux s k n t Niter

Example :

-python3 doubleRLPN.py 5 2 20 28 30 60 8 100

Niter is advised to be more than 1000 if possible to get the most accurate
estimation as possible.

Typical output

An output file in

data/doubleRLPN_w_taux_kaux_s_k_n_Niter.csv

of the format

T1,yT1

T2,yT2

...

where yTi
is the average number of false candidates for the threshold Ti.

5

2.2 Number of false candidates under the Poisson Model

In folder

Verify_Poisson_Model/Poisson_Model

What it does

Gives an estimate of the expected number of false candidates under the Poisson
Model. More precisely, similarly to Lemma 5 we can show that the expected
number of false candidates can be rewritten as

EC,Caux

(∣∣∣{x ∈ Fkaux
2 \ {ePGaux} : ̂f

y,H̃ ,Gaux
(x) ≥ T}

∣∣∣) =(
2kaux − 1

)
PC,Caux,x

(
̂f

y,H̃ ,Gaux
(x) ≥ T

)
where C and Caux uniformly at random in [n, k] and [s, kaux] respectively and
x is taken uniformly at random in Fkaux

2 \ {ePGaux}. Using Lemma 1 and
Proposition 4 we have that

̂f
y,H̃ ,Gaux

=
1

2k−kaux

n−s∑
i=0

s∑
j=0

Ni,jK
(n−s)
w (i)K

(s)
taux (j) .

Then, under the Poisson model (replacing Ni,j by a compound Poisson variable)
we have that

E
(∣∣∣{x ∈ Fkaux

2 \ {ePGaux} : ̂f
y,H̃ ,Gaux

(x) ≥ T}
∣∣∣) =

(
2kaux − 1

)
P (Z ≥ T)

(1)
where

Z =
1

2k−kaux

n−s∑
i=0

s∑
j=0

Ñi,jK
(n−s)
w (i)K

(s)
taux (j)

and

Ñi,j ∼ Poisson

(
Ñj

(
n−s
i

)
2n−k

)
and Ñj ∼ Poisson

((
s
j

)
2kaux

)
and where the variables are independent.

Given the parameters of the algorithm w, taux, kaux, s, k, n, t and Niter, this
script estimates Equation (1) by a monte-carlo method: it draws Niter 2

kaux

variables Z to heuristically estimate P (Z ≥ T).

How to run

-python3 PoissonModel.py w taux kaux s k n t Niter

Example :

-python3 PoissonModel.py 5 2 20 28 30 60 8 100

6

Niter is advised to be more than 1000 if possible to get the most accurate
estimation as possible. This part is usually the longest and can take several
hours with the parameters given as example. Consider parallelizing the code.

Typical output

An output file in

data/PoissonModel_w_taux_kaux_s_k_n_Niter.csv

of the format

T1,yT1

T2,yT2

...

where yTi is the average number of false candidates for the threshold Ti under
the Poisson Model.

3 Prediction of lattice score function

In folder

Lattice_Prediction/

Overview of the folder

• prediction_lattices.ipynb

– Reproduces Figure 3 and 4 for different parameters as described in
Section 8 of the article. w appearing in Equation (19) is taken here
as the average length of the short dual vectors returned by the sieve.
They are stored in the following file.

• out_nX_fftY_enumZ.txt

– File containing information about the lattice and short dual vectors
returned by the sieve. This file was created by showing the variables
”Bprime” (before the call to the ”reduce and sieve” function) and
”dual db” of https://github.com/ludopulles/DoesDualSieveWork/
tree/main/code/unif_score.py with input n = X, fft= Y, enum=
Z (q is set to default to 3329).

• Data_DP23/

– is taken from https://github.com/ludopulles/DoesDualSieveWork/

tree/main/data

7

https://github.com/ludopulles/DoesDualSieveWork/tree/main/code/unif_score.py
https://github.com/ludopulles/DoesDualSieveWork/tree/main/code/unif_score.py
https://github.com/ludopulles/DoesDualSieveWork/tree/main/data
https://github.com/ludopulles/DoesDualSieveWork/tree/main/data

How to run

First, unzip the following compressed dataset:

-unzip out_n90_fft22_enum26.zip

then, run the notebook:

-jupyter notebook prediction_lattices.ipynb

4 Verification of complexity claims

In folder

Complexity_Claim/

The files are meant to verify the complexity claims relative to doubleRLPN.

Overview of the folder

• doubleRLPN_BJMM12.csv

– Contains, for different code rates R, the optimized relative parame-
ters and the associated complexity of the doubleRLPN decoder to de-
code at the relative Gilbert-Varshamov distance when using BJMM12
technique to compute low-weight parity-checks. These parameters
are used in Proposition 9 to compute the asymptotic complexity of
the algorithm. The file contains, for different rates R the values of
σ,Raux, ν, ω, τ along with λ1, λ2, π1, π2, the later 4 parameters are
used in Proposition 11 to compute the complexity of computing the
parity-checks using BJMM12 technique. All the parameters (even
λ1, ...) are written relatively to n. τaux is implicitly set to be equal
to σh−1

2

(
1− Raux

σ

)
and Naux is implicitly set to be equal to 1. The

parameters relative to the two subroutines Dumer-Decoder and
Solve-SubProblem will be computed on the fly in the following
file.

• complexity_doubleRLPN_BJMM12.py

– Using the relative parameters contained in the parameter file, this
script re-computes, using the formula in Proposition 9, the time com-
plexity exponent (αdoubleRLPN) of the doubleRLPN decoder. This
script also assert that the parameters meet the constraints of Propo-
sition 9 and Proposition 11 (executions fails if one constraint is not
verified).

8

How to run

-python3 complexity_doubleRLPN_BJMM12.py

Typical output

A list of complexity exponent

Rate: 0.01000; Complexity: 0.00539

Rate: 0.02000; Complexity: 0.01009

...

9

	Overview of the repository
	Verification of the Poisson Model
	Prediction of lattice score function
	Verification of complexity claims

